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1. THE motion of gases through minute channels, such as capillary tubes, porous plugs,
and apertures in thin plates, has been the subject of much attention during the last

fifty years.

The experimental study of these motions, principally by Gramam,*

resulted in the discovery of several important properties of gases. And it is largely, if

not mainly, as affording an explanation of these properties that the molecular theory
has obtained such general credence.
It does not appear, however, that either the experimental investigations of these
motions or the theoretical explanations of the properties revealed have hitherto been
in any sense complete.

* Hdin. Phil. Trans., 1831; Phil. Trans., 1846 and 1863.
5 A2
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There exists a whole class of very marked phenomena which have escaped the
notice of GRAHAM and subsequent observers; while several of the most marked and

important facts discovered by GramAM have hitherto remained unconnected by any
theory.

2. Amongst the best known of the phenomena is the difference in the rates at
which different gases transpire through minute channels, and the consequent difference
of pressure which ensues when two different gases initially at the same pressure are
separated by a porous plate. It does not appear, however, that hitherto any attempt
has been made to ascertain the existence of what may be considered a closely analogous
phenomenon—that a difference of temperature on the two sides of the plate might
cause gas, without any initial difference of pressure or any difference in chemical con-
stitution, to pass through the plate—mnor am I aware that such a result from a difference
of temperature has been in any way surmised (see Appendix, note 1).

I have, however, now ascertained, by experiments which will be described at length’
that a difference of temperature may be a very potent cause of transpiration through
porous plates. So much so that with hydrogen on both sides of a porous plate, the
pressure on one side being that of the atmosphere, a difference of 160° F. (from 52° to
212°) in the temperature on the two sides of the plate secured a permanent difference
in the pressure on the two sides equal to an inch of mercury; the higher pressure
being on the hotter side. With different gases and different plates various results
were obtained, which are however, as will be seen, connected by definite laws.

I propose to call the motion of the gas caused by a difference of temperature
Thermal Transpiration (see Appendix, note 2).

3. Again, although GranAM found that he obtained not only very different results
but also very different laws of motion with plates of different coarseness or with plates
and capillary tubes, neither he nor any subsequent observer appears to have
followed up this lead. As regards GRAHAM this appears to me to be somewhat sur-
prising. For although he may have considered the mere difference in the results to
have been analogous to the difference found by PorservrLe for liquids, it would seem
as though the difference in the laws of motion which he obtained should have excited
his curiosity ; and then, as he was avowedly of opinion that gas is molecular, he could
hardly have failed to observe that so long as the distance separating the molecules in
the gas bore a fixed relation to the breadth of the openings in his plates he should
have had the same laws of motion. This view, however, appears to have escaped him
as well as all subsequent observers. Otherwise it would have been seen that with a
simple gas such as hydrogen, similar results must be obtained so long as the density of
the gas is inversely proportional to the lateral dimensions of the passages through the
plates.

By experiments, to be described, I have now fully established this law. I find that
with different plates similar results are obtained when the densities of the gas with

* Phil. Trans., 1863.
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the different plates bear a fixed ratio; and this is the case whatever may be the cause of
the transpiration, ¢.e., a difference of temperature or a difference of pressure (a difference
of gas I have not investigated, as it was obviously unnecessary to do so). Thus with
two plates, one of stucco and the other of meerschaum, similar results of transpiration
caused by pressure were obtained when the densities with the plates were respectively
as 1 to 5'6, both with hydrogen and air and at pressures ranging from 30 to 2 inches
of mercury. Also with the same two plates similar results of thermal transpiration
were obtained when the densities were respectively as 1 to 65 both for air and
hydrogen, and through a range of pressures from 30 to ‘25 inches of mercury. The
discrepancies of 5'6 and 65 were in all probability owing to a slightly altered
condition of the plates (see Appendix, note 4).

This correspondence of the results at corresponding densities holds, although the law
of motion changes. Thus with air at 30 inches the law was the same as that obtained
by GramaMm for stucco plates, while at the smallest pressures (‘25 inch) it was nearly
the same as he found for graphite plates or apertures in thin plates.

4. Having established this law of corresponding results at corresponding densities, it
became apparent that the results obtained with plates of different coarseness and with
the same plates but different densities of gas also followed a definite law. This law,
which admits of symbolical expression, shows that there exists a definite relation
between the results obtained, the lateral dimensions of the passages, and the density
of the gas.

This law is important as reconciling results which have hitherto appeared to be
discordant, such as GRAHAM’S results with plates of different coarseness, and as tending
to complete the experimental investigation; but it has another and a more general
importance. i ,

It may not appear at first sight, but on consideration it will be seen that this law
amounts to nothing less than an absolute experimental demonstration that gas
possesses a heterogeneous structure—that it is not a continuous plenum of which each
part into which it may be divided has the same properties as the whole.

It would appear that GrRAHAM must have had this proof, so to speak, under his eyes,
and it is strange that both he and subsequent observers have overlooked it. It seems
possible, however, that they were not alive to the importance of such a demonstration.
It is now so generally assumed that gas does possess molecular structure that the
weakness of the evidence on which the assumption is based and the importance of
further proof are points that are apt to escape notice.

The importance of an expervmental demonstration that gas possesses
molecular structure.

5. The idea of molecular gas does not appear to have originated from the recognition
of properties of gas which were inconsistent with the idea of a continuous plenum, but
from a wish to reconcile the properties of gas with the properties of other substances,
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or more strictly with some general property of matter, And the general conviction
which may be said to prevail at the present time is owing to the simplicity of the
assumptions on which the molecular hypothesis is based, and the completeness with
which many of the properties of gases have been shown to follow from the molecular
hypothesis. v

But it will be readily seen that however simple may be the assumptions of the
kinetic theory, and however completely the properties of gases may be shown to foilow
from these assumptions, this is no disproof of the possibility that gas may be a con-
tinuous substance, each elementary portion of which is endowed with all the properties
of the whole, and unless this is disproved there may exist doubt as to the necessity for
the kinetic theory.

Any direct proof, therefore, that gas is not ultimately continuous altogether alters
the position of the molecular hypothesis.

The suffictency of the demonstration that gas is not structureless.

6. In order to prove that gas is not continuous it is not necessary that we should be
able to perceive the actual structure; we have only to find some property of a certain
quantity of gas which can be shown not to be possessed by all the parts—some property
which is altered by a re-arrangement of the parts.

Hitherto I believe that no such property has been recognised, or at all events the
conclusions to be drawn from such a property have not been recognised. The pheno-
mena of transpiration as well as those of the radiometer depend on such properties,
but these properties have not been sufficiently understood to bring out the conclusion.
This conclusion however follows directly from the law indicated in Art. 4, viz.: that
the results of transpiration and impulsion depend on the relation between the size of
the internal objects and the density of the gas.

The force of this reasoning will be better seen after the results of the experi-
ments have been described, but it is introduced here to show the importance which
attaches to what otherwise might be considered secondary properties of gases.

To these properties I must now return, not having yet indicated how I was led to
make the experiments, and besides those already mentioned there remains an impor-
tant class of phenomena to be noticed.

The results deduced from theory.

7. Although the existence of the phenomena of thermal transpiration and the exis-
tence of the law of corresponding results at corresponding densities have been verified
by experiment they were not so discovered.

They followed from what appeared to me to be a successful attempt to complete the
explanation I had previously given™ of the forces which must result when heat is
communicated from a surface to a gas and the phenomena of the radiometer.

Proc. Roy. Soc., 1874, p. 402,
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Having found, what 1 had not at first perceived, that according to the kinetic
theory the force resulting from the communication of heat to a gas must depend on
the surface from which it is communicated being of limited extent, and must follow a
law depending on some relation between the mean path of a molecule and the size of
the surface, it appeared that by using vanes of comparatively small size the force
should be perceived at comparatively greater pressures of gas (see Appendix, note 3).

On considering how this might be experimentally tested, it appeared that to obtain
any result at measurable pressures the vanes would have to be very small indeed ; too
small almost to admit of experiment. And it was while thinking of some means to
obviate this difficulty that I came to perceive that if the vanes were fixed, then instead
of the movement of the vanes we should have the gas moving past the vanes—a sort of
inverse phenomenon—and then instead of having small vanes, small spaces might be
allowed for the gas to pass. Whence it was at once obvious that in porous plugs I
should have the means of verifying these conclusions. I followed up the idea, and by
a method which I devised of taking into account the forces, tangential and normal,
arising from a varying condition of molecular gas, I was able to deduce what appears
to me to be a complete theory of transpiration. '

This theory appears to include all the results established by Grauam, as well as
the known phenomena of the radiometer, which for the sake of shortness I shall call

_the phenomenc of vmpulsion. 1 was also able definitely to deduce the results to be
expected, both as regards thermal transpiration and the law of corresponding densities
both for transpiration and impulsion.

Having made these deductions, I then commenced the experiments on transpiration,
which so completely verified my theoretical deductions that I have been able to
produce the theory in its original form, with some additions, but without any important
modification.

Moreover, having succeeded (not without some trouble) in rendering apparent the
effect of differences of temperature in causing gas to move through fine apertures,
I recurred to the original problem, and by suspending fibres of silk and spider lines to
act as vanes, I have now succeeded in directly verifying the conclusion that the
pressure of gas at which the force in the radiometer becomes apparent varies inversely
as the size of the vanes. With the fibre of silk T obtained repulsion at pressures of
half an atmosphere. '

The arrangement of the paper.

8. My object is to describe the reasoning by which I was led to undertake the
experiments as well as the experiments themselves; but as the theory will be better
understood after acquaintance with the facts, I have inverted the natural order and
given the experiments first. And in order that the reader may not be at a dis-
advantage in reading the accounts of the experiments, I include here a somewhat fuller
account of the results to be expected as deduced from the theory which is to follow.
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The Loavs established by the experiments.

9. Law I.—When gas exists at equal pressures on either side of a porous plate across
which the temperature varies, the gas will transpire through the plate from the colder
to the hotter side, with velocities depending on the absolute temperature and chemical
nature of the gas, the relation between the density of the gas and the fineness of the
pores, the thinness of the plug, and the difference of temperature on the two sides of
the plate.

Law IL.—In order to prevent transpiration through the plate, the pressure on the
hotter side must be greater than the pressure on the colder side. This difference of
pressure will depend on the chemical nature of the gas, the mean pressure of the gas,
the absolute temperature, the relation between the size of the pores and the density
of the gas, and the difference of temperature on the two sides of the plate, but not on
the thickness of the plate.

Law ITL-—For the same plate and the same difference of temperature when the gas
is sufficiently dense, the difference of pressure is approximately proportional to the
inverse density, but as rarefaction proceeds this law gradually changes, the increase in
the difference of pressure becomes less and less until that difference reaches a maximum
and begins to diminish, then on further rarefaction this diminution increases until the
difference of pressure becomes approximately proportional to the density of the gas.

Law IV.—After the rarefaction has reached that point at which the difference in
pressure is nearly proportional to the density, then the difference in pressure will bear
to the greatest pressure the ratio which the difference in the square roots of the
absolute temperature bears to the square root of the greatest absolute temperature, or
if A and B indicate the two sides of the plate,

PPy _ V-7
Py AVTa
where p and 7 represent respectively the pressure and the absolute temperature in
the gas.

Respecting the results depending on the relation between the density of the gas and the
fineness of the pores.

Law V.—Both in the case of thermal transpiration and of transpiration under
pressure, similar results will respectively be obtained when the density of the gas
bears a fixed relation to the diameters of the apertures in the plates.

Respecting the rate of transpiration arising from o difference of pressure on the
two sides of the plate.

Law VI.—When gas exists at different pressures on the two sides of a plate, and the
difference of pressure bears a fixed ratio to the pressure on either side; then for a
certain plate and a certain gas the time of transpiration of equal volumes will, when
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the gas is sufficiently dense, be inversely proportional to the density ; but as the
rarefaction increases, the increase in the time of transpiration becomes less and less,
until the time becomes constant.

Law VIL.—When the rarefaction is so great that the time of transpiration of equal
volumes of the same gas is constant, the times of transpiration of equal volumes of
different gases will be proportional to the square root of the atomic weights of
the gases.

Respecting the results of impulsion and the connexion between these results and the
relation between the density of the gas and the size of the vanes.

Law VIIL—When the gas is sufficiently dense, then the impulsive force will be
inversely proportional to the densities of the gas; but as the rarefaction proceeds the
increase in the force becomes less and less until the rarefaction has reached a point
depending on the size of the vanes (the larger the vanes the higher must be the
rarefaction), after which the force begins to diminish, and ultimately diminishes with
the density. '

These Jaws were reduced to the form in which they have been stated in order to
adapt them for experimental verification. Thus they do not represent the simplest
nor yet the fullest form in which the properties of the gas can be expressed. This
may be seen by reference to Sections X. and XII which treat of the theory of these
properties. There definite expressions will be found for the relations indefinitely
indicated in Laws I. and II. These definite expressions are not introduced here,
because they have not been definitely verified by experiment.

The definite relations expressed in Laws III., IV., V., VI, VIL., and VIIL, although
derived from theoretical considerations, have all been to a greater or less extent veri-
fied by experiment—as far as the possible range of densities would admit—and in all

cases the experimental results have within the limits of error corresponded well with
the theoretical deductions.

_SECTION II.—EXPERIMENTS RELATING TO THERMAL TRANSPIRATION.

10. In commencing these experiments it was impossible to form any estimate
whatever of the magnitude of the results to be expected. The laws just stated only
showed what would be the comparative value of the results under different circum-
stances; so that until a result had been found it was impossible to predict whether,
with any particular plate, the result would be appreciable or not.

Thus it happened that although the experiments commenced on January 15, 1878,
it was not until March that any definite results were obtained. This delay was
chiefly owing to several very subtle sources of disturbance, the effect of which could
only be distinguished from true results after a series of tests extending in each case
over several days.

MDCCCLXXIX, 5B
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The material first used for the plates was WEDGEW0OD biscuit ware, Pths inch thick;
and it was with this material after a long series of trials that connected results were
first obtained. These results were very minute. With air at the pressure of the
atmosphere, the greatest difference of pressure was '1 of an inch (2'5 millims.) of
mereury.

Having however once obtained this result, it was seen to follow from Law V., Art. 9,
that greater results could be obtained with a finer plate. My idea was to try graphite,
such as that used by GrRAHAM; but in the meantime it occurred to me to try meer-
schaum, which proved to be a most convenient material, as it could be obtained in
any sizes and readily cut into plates of any thickness. ‘

‘With this material, first used on March 7, the later results were very striking; the
difference of pressure amounting to ‘25 of an inch with air at the pressure of the
atmosphere, and to nearly an inch with hydrogen at the same pressure.

The description of the details of the earlier experiments, together with the various
difficulties which were met with and the means employed to overcome them, would
take too much room to admit of their being given at length. I shall therefore proceed
at once to the description of the apparatus in its final form, and shall confine myself to
noticing only such results as are important to the subject.

Description of the apparatus.

11. This consisted principally of an instrument which may be called a thermo
diffusiometer.

This instrument, as shown in fig. 1a, Plate 47, consists essentially of two chambers
separated by a plate of porous material, means being provided for keeping the
chambers at constant but different temperatures for many hours at a time; also for
measuring the pressure of gas in the chambers, for exhausting the chambers, and for
bringing the chambers into direct communication when desired.

The chambers are formed by tin plates separated by rings of india-rubber, between
which is held the porous plate. The external diameter of the rings is about 3% inches;
and the internal diameter, the diameter of the chambers, is 14 inches. The thickness
of the rings, the depth of the chamber, is about {%ths of an inch. The porous plates
are 2 inches in diameter, so that the edges are well covered by the rings of india-rubber
which bound the chambers; and outside the plate is fitted another ring of india-
rubber of the same thickness as the plate, so as to prevent any leak through the edges
of the plate.

Outside the tin plates which form the walls of the chamber, other chambers are
formed in the same manner by rings of india-rubber and tin plates. These second
chambers afford the means of regulating the temperature, steam being continually
passed through the one and cold water through the other. The chambers are made
air-tight by means of pressure, which is brought to bear by means of a wooden press
into which the rings and plates fit.
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Fig. 1.

Figure 1 represents the plates and india-rubber rings somewhat separated.
E. Is the porous plate with the ring of india-rubber outside it.
FF. The rings which form the two chambers for gas on each side of the plate.
GG. The tin plates which close these chambers.
HH. The india-rubber rings which form the hot and cold chambers.
II. The tin plates which close these chambers.
KK. Tubes soldered to the tin plates GG to communicate with the chambers
FF, and
LM, LM. Are tubes soldered to the tin plates II, to allow of the streams of
steam or water through the chambers HH.

Fig. 2.
I

Figure 2 shows a section taken along the axis of the rings and plates, showing
them in position, also the wooden press by which they are held together.

Conduction of heat.

12. The circumstance which principally led to the selection of this form of apparatus
was the necessity of preventing, as far as possible, the conduction of heat from the hot
to the cold side, through the material bounding the chambers. It will be seen that
there is no metallic communication from the hot to the cold side, and that all the heat

5B 2
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which escapes across, besides what passes through the porous plate, must pass through
something like half an inch of india-rubber, or through a considerably greater thickness
of wood.

Commumacation with the chambers.

18. The communication with the gas chambers is effected by means of the tubes KK,
the outward ends of which are fitted with three and four branches respectively.

By one of these branches the left chamber is connected with the open end of a
mercurial vacuum gauge V or barometer tube, which measures the absolute pressure
of this chamber.

Another branch from the left chamber, and a branch from the right, are respectively
connected with the two ends of a siphon tube S containing mercury, which acts as
a differential gauge for measuring the difference of pressure in the two chambers.

By means of the third branch from the left, and a second from the right, direct
communication can be established between the chambers by turning a tap D.

The third and fourth branches on the right are used to establish communication
with a mercurial pump and to admit dry gas.

These various connexions are shown in fig. la, Plate 47, which also shows the
general arrangement of the apparatus. .

The connexions between the metal and glass tubes are made with thick india-rubber
tubing, 4th inch bore and £th inch external diameter; and the two taps D and P
shown in the sketch are both of glass.

The gauges.

14. The vacuum gauge is an ordinary barometer tube about 82 inches long and
L inch internal diameter, having its second limb sufficiently long to allow of the
mercury standing level when the chambers were exhausted.

The differential gauge is of glass tube about fth inch internal diameter, it is
altogether 30 inches long, so as to prevent the mercury being driven out of the tube
by too great a difference of pressure.

Before the mercury was put into this tube it was wetted with sulphuric acid. A
small quantity of this remained and covered the mercury on either side, by means of
which sulphuric acid the free motion of the mercury was secured, so that differences of
pressure as small as ygooth of an inch of mercury caused it to move without the

necessity of shaking.

Reading the gauges.

15. As far as the vacuum gauge was concerned, there was no point to be gained by
extreme accuracy in reading the absolute pressure of gas in both chambers, so that a

scale attached to the gauge was found to answer all purposes.
On the other hand the range of the experiments depended on the accuracy with
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which the differential gauge could be read. A special means of reading this gauge
was devised. This consisted of a species of cathetometer almost close to the gauge,
in which, instead of a telescope, a microscope with an inch object glass and a semi-disc
in the focus of the eye-piece was used, the screw which moved the microscope had
50 threads to an inch, and the head had 200 divisions, so that one division corresponded
to the tggooth part of an inch. Owing to the high magnifying powers, the effect ot
a motion of one division was visible, and several readings taken from the same position
of the mercury agreed to within one division.

Testing the apparatus.

16. The complicated character of the apparatus and the number of joints rendered
it extremely difficult to make it perfectly tight. When working at the pressure of
the atmosphere this was of no great moment, but when working with rarefied gas it
was necessary that it should be so tight that the leak might cause no appreciable
disturbance.

At first india-rubber varnish was used to make the joints tight; but this did not
answer, as the vapour from the varnish produced very considerable disturbance. ~After
this the surfaces of the india-rubber were carefully washed, and then considerable
pressure applied by wrapping wire on the tubes and screwing up the press. In this
way, after a few days, the apparatus became what may be called perfectly tight.
There was a slight leak or probably slight diffuson through the india-rubber, for after
the experiments were concluded the apparatus was left full of hydrogen at the pressure
of the atmosphere, and the tap communicating with the pump closed. It was then
found that the pressure within the chambers steadily fell until it reached 9 inches
of mercury. This point was reached after about one month. The pressure then began
to rise, and in another month the gauge showed 12 inches. The entire volume of the
chambers and tubes is only about 6 fluid ounces, so that it might well be imagined
that the hydrogen had been absorbed by, or condensed on the india-rubber or the
porous plate, but the fact that the pressure again rose seemed to imply that the
hydrogen had escaped ; but whether through the india-rubber or not it is impossible
to say. -

Such a leak, however, was entirely without effect on the results. In fact, a leak
which admitted air at the rate of 1 inch of mercury in an hour into one chamber did
not cause any appreciable alteration in the differential guage.

Drying the gas.

17. The presence of vapour in the gas was at first a source of great trouble. The
tendency of porous plates to absorb moisture is so great, and the presence of vapour in
the gas produces such a great disturbance even when the pressure of vapour is a long
way below that at which it would condense on the cold surface, that for some time
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this threatened to prevent any satisfactory result being obtained. At last, however,
by having steam on both sides, and repeatedly exhausting and refilling with air that had
been passed slowly through drying tubes, 40 inches long, containing first sulphuric and
then anhydrous phosphoric acid—for which Iam indebted to the kindness of Dr. RoscoE
—the effect of vapour was all but eliminated, and consistent results were obtained over
several trials, even when the sides of the steam and water were reversed.

The dufferences of temperature.

18. The steam used for heating the apparatus was obtained by boiling water in a
glass flask which held about a gallon, enough to last for twelve hours at a time. The
flask was fitted with a water safety-valve; so that the pressure of steam could not
exceed about 8 inches of water. The flask was placed about 6 feet from the instru-
ment, so that the heat from the gas flame did not produce any material disturbance
or materially affect the mercury in the gauges.

The cold water was direct from the main, and was found to be very constant in
temperature, not varying throughout the experiments more than 28°—from 47° F. in
February to 70° F. in July.

~In this way the tin plates (GG, fig. 1) which bound the gas chambers were respec-
tively maintained at temperatures differing by less than 1° F. from the temperature of
the steam (212°) and that of the water.

The sides of the porous plate would not acquire the same temperatures as the steam
and water, because the conduction through the porous plates would tend to equalise
the temperature. Nor was there any means of ascertaining the exact temperatures
other than by comparing the results obtained. But from these it appeared that there
was considerable difference between the temperature of the surfaces of the porous plate
and that of the opposite tin plate. A method of eliminating this difference has been
found, and this will be explained with the results themselves.

The porous plates.

19. These, whether of biscuit ware, meerschaum, or stucco, were circular disecs
2 inches (53°0 millims.) in diameter. The rings FF which formed the chamber had a
diameter of 14 inches (38 millims.), and these limited the portion of the plate exposed
to the passage of gas. The plates were of different thicknesses, the thinest being
1teth inch (1'5 millims.) and the thickest ‘44 inch (14'2 millims.).

The results with air through porcelain plate No. 3 and meerschaum Nos. 1 and 2.

20. After numerous experiments, commencing on January 28, with plates Nos. 1,
2, and 8 of biscuit ware, the results of which, although there appeared to be a residual



PROPERTIES OF MATTER IN THE GASEOUS STATE. 741

difference of pressure, were very much disturbed, the first definite and consistent
results were obtained with a porcelain plate No. 8, fth inch (2'5 millims.) thick, on
February 22.

TaBLe I.—Thermal transpiration of air by biscuit ware plate No. 3 (‘1 inch or
2'5 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature of
water, 47° F. or 8° C,

Mean pressure by vacuum Difference of pressure by Ratio of mean pressure to
gauge. siphon gauge, February 22. difference of pressure.
inches. millims. inch. millims.
30 762 : 254 300

This result was found to remain constant over a period of 8 hours, during which the
steam and water were kept constantly flowing. It was also found to be the same
whichever side of the diffusiometer was heated. During the experiment the tap
bringing the hot and cold chambers into direct communication was frequently opened,
and the differential gauge then indicated equal pressures. After each of these open-
ings on the tap being again closed the same difference was re-established in a few
seconds.

The next experiments were made with a somewhat thinner plate of meerschaum
No. 1.

TasLe II.—Thermal transpiration of air by meerschaum plate No. 1 (‘06 inch or
1'5 millims.). Temperature of steam, 212° F. or 100° C.; temperature of water,
47° F. or 8° C.

Mean pressure by vacuum Difference of pressure Ratio of mean pressure to
gauge. by siphon gauge, March 12, difference of pressure.
inches. millims, inch, millims,
30 762 ‘08 2-03. 350

As it seemed highly probable that the meerschaum plate was of finer texture than
the porcelain plate previously tried, the fact that the difference of pressure with the
meerschaum was not larger than with the porcelain was a matter of some surprise.
There appeared, however, to be a possible cause for this in the thinness of the meer-
schaum. It was possible that there was some flaw in the plate, or more probably that
the thinness of the plate allowed a considerable equalisation of temperature by the
conduction of heat. It was therefore resolved to try a thicker plate of meerschaum,
and a plate ‘25 inch (63 millims.) was introduced in place of that previously tried.
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TasLe III.—Thermal transpiration of air by meerschaum plate No. 2 (‘25 inch or
63 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature of
water, 47° F. or 8° C. '

Mean pressure by vacuum Difference of pressure Ratio of mean pressure to
gauge. by siphon gauge, March 15. difference of pressure.
inches. t millims. inch, millims.
302 | 76405 25 6-096 126
129 | 3276 20 5-080 64
853 L2167 ‘17 4-318 50
370 | 94:0 ‘12 3048 - 31
2:0 i 508 ‘08 2:032 25
0-88 i 12-35 045 1-143 20
05 j 127 ‘085 0-889 136

Whether the fact that the thicker plate of meerschaum gave nearly three times the
difference of either of the previous plates was due to the thicker plate maintaining a
greater difference of temperature, or to some difference of texture in the thin plate,
such as a flaw, has not been clearly determined, but it now appears probable that it
was largely due to the first of these causes.

With this plate lower pressures were for the first time tried, and Table IIL shows
these differences falling with the pressure.

The ratio of the difference of pressure to the mean pressure, however, as is shown in
the last column, increases as the pressure falls, and apparently is approximating to a
constant value at lower pressures. This is according to Law IIL, Art. 9.

From Law IV., Art. 9, it appears that this ratio should, as the pressure fell, have
approximated to the ratio which the difference of the square roots of the absolute
temperature on the two sides of the plate bears to the square root of the temperature
on the side at which the pressure was measured. Assuming 113 to be this ratio,
it would appear that there must have been considerable differences of temperature
between the surfaces of the meerschaum and the side of the plate; but it also appeared
probable that with still lower pressures the ratio might have been considerably lower.

It would have been desirable to have carried the experiments to lower pressures,
but at that time this was impossible as there was then no special means of reading
the differential gauge ; so that this had to be deferred until such a means was pro-
vided.

Hydrogen.

21. In the meantime other gases were tried. Owing to its lightness it was
thought probable that hydrogen would at the higher pressure give a somewhat higher
result than air. How much this might be the theory gave no certain indication, for it
depended on qualities of the gas which had not been determined. But at the lower
pressure, according to Law IV., the difference of pressure should approximate towards
the same value relatively to the absolute pressure.
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This was clearly a point which might be tested even though no very close approxi-
mation should be reached. Hydrogen was accordingly tried.

TaBrLE IV.—Thermal transpiration of hydrogen by meerschaum plate No. 2 (-25 inch
or 63 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature
of water, 47° F. or 8° C.

Mean pressure by vacuum Difference of pressure by Ratio of mean pressure to
gauge. . siphon gauge. difference of pressure.
inches. millims. inch, millims,
302 767 ‘88 23:37 324
130 330 60 1 1524 21
75 1905 44 11-18 17
425 1079 28 711 15
2:0 508 15 381 13-3
1-0 254 08 203 125
05 127 ‘036 091 13-7

This table shows that at the pressure of the atmosphere the difference with hydrogen
was four times as great as it had been with air, and reached the very considerable
figure of *92 of an inch of mercury. This was much more than had been anticipated,
although there was nothing in the theory to show that it should not exist. This
great difference at the higher pressures only serves to bring out more forcibly the
convergence according to Law IV. as the pressure falls. At pressures of 1 inch it will
be seen that the differences for air and hydrogen are as 12'5 to 20, while if the results
at *5 inch could be trusted, the ratio is 137 to 13°6.

-Kogewr Jo soyowt ul sanssaad Jo 80U

Mean pressure in inches of mercury.
MDCCCLX X1X. 5 ¢
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The convergence of these results is best seen in the accompanying diagram. The
curves are drawn through points of which the pressures are abscisse, and the differences
of pressure (on a different scale) are the ordinates.

The maximuwm difference of pressure (carbonic acid).

22. The curves, fig. 3, show that the differences both for hydrogen and air appear
to be tending, as the pressure rises, to a maximum value. This was exactly what was
expected from Law IIL, Art. 9, and had the apparatus been capable of withstanding
considerable pressures it would have been desirable to have raised the pressure until the
maximum was passed. But it appeared that the same end might be more readily
accomplished in other ways.

Owing to the great density and low coefficient of diffusion of carbonic acid, it seemed
to be probable that with this gas the difference of pressure would reach a maximum at
considerably lower pressures than either hydrogen or air. Carbonic acid was therefore
tried.

TaBLe V.—Thermal transpiration of carbonic acid by meerschaum plate No. 2
(25 inch or 63 millims. thick). Temperature of steam, 212° F. or 100° C.; tem-
perature of water, 47° F. or 8° C.

Mean pressure by vacuum Difference of pressure Ratio of mean pressure to
gauge. by siphon gauge, March 10. difference of pressure.
inches, millims, inch. millims,
301 7645 °13 3302 230
195 4953 ‘16 4-064 122
1425 361-8 16 4064 - 89
10° 2667 ‘15 3-810 70
80 2032 ‘13 3-310 61
45 114:3 ‘11 2:794 40
2:0 508 08 2:032 25
10 254 05 1-270 20
05 12-7 *04 1016 12

Table V. shows that with carbonic acid the maximum difference was at a pressure
between 20 and 15 inches, the difference rising as the pressure fell from 30 inches to
this point. After this point was passed the difference fell with the pressure.

The curve on fig. 8 which represents this table shows the point of maximum
difference, and the figure also shows that as the pressures became small the curve for
carbonic acid converges towards the curves for air and hydrogen.

These results for carbonic acid are perhaps sufficient to verify Law IIL respecting the
existence of a maximum. But they were obtained with considerable trouble, as the
india-rubber tubing absorbed the carbonic acid very rapidly, and so caused considerable
“ disturbance. For this reason carbonic acid was not again used.
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Stucco plate No. 1.

23. Asit appeared from Law V., Art. 9, that any increase in the coarseness of the plate
should reduce the pressure at which the difference should be a maximum for each gas,
a plate of stucco was tried with this object.

It was clear that the differences would be much smaller with the stucco than with
the meerschaum. Therefore this plate was not tried until the differential gauge had
been furnished with the cathetometer to read to tgsgoth of an inch (zdgth of a
millim.).

Final expervments.

A series of experiments, commencing with stucco plate No. 1, but continued with
meerschaum plate No. 3 and stucco No. 2, were commenced on May 6, and repeated
in July. To give all the observations made in this series of experiments would occupy
too much space, therefore a selection has been made, those results being chosen which
appeared to be least subject to disturbance. However, the results all agree so well
that there was but little choice, and it was clearly unnecessary to resort to the usual
method of taking mean values. Such differences as do exist are sufficiently accounted
for by the small differences in the temperature of the water, which was several degrees
higher in July than in May.

TasrLE VI.—Thermal transpiration of air by stucco plate No. 1 (‘25 inch or 6°3 millims.
thick). Temperature of steam, 212° F. or 100° C. ; temperature of water, 65° F.

or 18°4 C.
Mean pressure by vacuum Difference of pressure by R;zgfjrﬁ?n Log of diﬁ’%f fng.f of
gauge. siphon gauge, July 11, difference of pressure, | MeAn pressure. pressure.
inches. millims. inch. millims,
29-80 7569 0220 559 1360 2:474—1 2:342—4
2850 7239 0225 571 ” 2:455 2:352
2585 6566 ‘0235 597 .. 2412 2-371
23-40 59404 0250 635 903 2-369 2397
2220 5639 -0266 ‘675 835 2:346 2424
17-40 4439 -0294 *746 .. 2-240 2468
1540 3912 0336 ‘813 .. 2:187 2:526
13-60 3454 *0342 -868 . 2:133 2:534
12:25 3111 *0348 -884. .. 2-066 2-541
11-35 2883 " 9 326 2:053 2541
10-00 254:0 0366 929 . 2-:000 2:563
9:00 2286 *0380 965 .o 1954 2:579
7'50 190°5 ’ » 200 1-875 2579
675 1714 0376 955 . 1-630 2:575
6-00 152+4 » 955 .o 1-778 2:575
515 1308 0362 917 142 : 1711 2559
4-35 110°5 0354 899 120 1638 2-549
3:50 889 -0306 '828 107 1-544 2:513
2:90 737 ‘0314 797 92 1-462 2:496
235 597 0290 736 81 1-370 2-462
2:25 57:15 0284 721 79 1-350 2453
125 3175 0230 584 54 1-097 2:361
0-60 1524 0149 -378 42 1-778 2258
0-25 6-35 0080 203 31 1-398 1-903
0-15 266 0066 ‘167 23 1176 1-819

h a2
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TaprLe VII.—Thermal transpiration of hydrogen by stucco plate No. 1 (25 inch or
63 millims. thick). Temperature of steam, 212° F. or 100° C. ; temperature of
water, 63° F. or 17° C. ’

Difference of pressure by’ .

siphon gauge. Ratio of Log of

Mean pressure by vacuum P gauge. mean pressure to Log of difference of

gauge. difference of mean pressure. Pressure.
May 6. dJuly 11. - Dressure.
inches. millims, inch. inch, millims,

3300 8580 - 1340 3404 252 2:518—1 3127—4
31:00 7874 .. 1366 3470 227 2+491 3135
2900 7366 .. ‘1396 3546 207 2-462 3145
2850 7239 1408 .. 3576 203 2454 3149
” ' .. 1400 3556 ” ’ 3147
27:00 6858 .. 1436 3647 188 2-431 3157
2530 6426 . 1446 3672 174 2403 3160
2375 6032 . 1460 3708 162 2:375 3-164
22-00 5588 .. 1490 3784 147 2342 3173
2000 5080 .. 1530 3-886 130 2:301 3185
1900 4826 .. 1540 3912 123 2279 3187
18:00 457-2 .. ” 3912 116 2255 3187
16-70 424-1 .. 1542 3917 109 2:222 3188
16:00 4064 1532 .. 3-891 104 2204 3185
1580 4013 .. 1532 ” 103 2:199 3185
1490 3784 - 1538 3:906 94 2178 3187
13-35 3390 .. 1536 3901 87 2125 3-186
12:50 3175 . 1534 3896 81 2:096 3-186
1155 3934 . 1512 3840 76 2062 3179
9-80 2489 . ‘1506 3825 65 1991 3-178
9:50 2397 1512 .. 3-840 62'5 1977 3170
900 2286 . *1480 3759 60-8 1-954 3175
8:00 2032 .. 1470 3734 55 1-903 3167
6-00 152-4 .. 1320 3353 45 1-778 3120
325 825 e ‘1046 2:637 31 1-511 3:019
32 81-3 . 1020 2590 ” 1-505 3-008
20 50-8 . ‘0760 1930 25 1-301 2:880
1-8 4572 0760 .. ’ 23-5 1-255 2-880
115 29-21 . *0500 1-270 23 1-176 2698
07 17:78 . ‘0330 '838 21 0-845 2:518
06 1524 0280 . 711 ” 0-778 2447
04 10-16 .. 0190 482 ” 0-602 2:278
0-3 7°62 0158 . 401 19 0-477 2198

With the stucco plate the greatest differences of pressure, both in the case of air and
that of hydrogen, are small, something less than one-fourth the differences previously
found in the case of the meerschaum plate No. 2 ; but then with the stucco the points
of maximum difference are well below the pressure of the atmosphere.

The difference of pressure between the observations is so small, and the agreement
of the observations so great, that by merely joining the points plotted to represent the
observations, very fair curves are formed,
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Pig. 4.

These curves bring out in a marked manner the agreement of the results with
Law III., Art. 9.

With air the difference rises from '02 of an inch (‘508 millim.), at a pressure of
30 inches, to ‘0380 of an inch or (*965 millim.), at a pressure of 7'5 inches, which is
the maximum,

With hydrogen the difference also rises as the pressure falls from 30, but the rise is
not so great and the maximum is reached at 16 inches.

After passing the maximum the curves both fall, and in falling obviously converge.

This is all exactly in accordance with what was expected.

Corresponding pressures (stucco 1, meerschaum 2).

24. Law V. shows that there should be correspondence between certain portions of
the curve for stucco and those for meerschaum, although the corresponding points
would not be at the same pressures.

Assuming the temperatures to be the same, the corresponding points would be those
for which the ratio of the mean pressure to the difference of pressure were the same.
‘Which points may at once be found by comparing the figures in the columns showing
this ratio in Tables III. and IV., with the same columns in Tables VI. and VII.
respectively.

Before making such a comparison, however, it is necessary to introduce certain small
corrections for the difference in the temperature of the water in the two experiments ;
this, as will be subsequently explained, will be equivalent to diminishing the difference
in the Tables IIL. and IV. in the ratio 7 to 8.

Then we find that the pressures at which the ratios are the same in Tables III.
and VL. are approximately as 6 to 1, taking only the higher pressures, while the
Tables IV. and VIL give the ratio 67 to 1.

The results of this comparison, although not strictly consistent, indicate that there
is a correspondence, the points on the curves for meerschaum corresponding with points
on the curves for stucco, for which the pressures are about % for air, and 45 for hydrogen.

It was clear, however, that the number of observations with the meerschaum plate
was not sufficient to allow of a very close comparison with the curve for stucco, for the
accuracy with which the differences had been read without the cathetometer was not
sufficient to allow of any use being made of the lower pressures.
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Meerschaum plate No. 8.

25. A fresh meerschaum plate, ‘44 inch thick, was therefore tried, another diffusio-

meter, exactly similar to the original one, being constructed for the purpose,

TapLe VIII.—Thermal transpiration of air by meerschaum plate No. 3 (‘44 inch or
112 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature of
water, 63° F, or 17° C,

Difference of pressure by Ratio of
Mean pressure by vacuum siphon gauge. mean pressure to | Log of mean | ;. ﬁ'];oegngg £
gauge. difference of pressure. )r;sure‘o
May 11. May 14. pressure. .
inches. millims. inch. inch. millims.

31-00 7874 2200 .. 5588 141 2:49—1 2:342—3
2950 7493 .. 2140 5436 138 2-47 2-330
2850 7239 2160 .. 5486 132 2:45 2-334
27-50 6985 . 2126 5400 129 2-4d4 2-327
24:50 6223 . 2100 5334 116 2:37 2-322
2300 584¢2 2130 .. 5410 108 2:36 2328
21-50 546°1 .. 2054 5217 104 2:33 2312
20-00 5080 2120 - 5385 94 2:30 2:326
1950 4953 .. 1970 5003 99 2:29 2:294
18:00 457°2 2100 . 5334 85 225 2322
17-:00 431-8 .. 1890 4-800 90 2:23 2:276
12-50 3175 1730 .. 4394 72 2-09 2:238
11-50 2921 .. 1630 4:140 70 206 2:212
825 209°5 *1446 - 3672 57 1-92 2160
780 1981 .. 1336 3393 59 1-89 2105
520 1333 -1184 .. 3-007 44 1-72 2073
4-70 1184 .. 1050 2:667 ) 1:672 2:021
340 86-4 0904 . 2-290 37 1-531 1954
310 787 .. ‘0806 2-047 38 1-491 1-906
2:10 533 0710 .. 1-803 29 1-322 1-851
2:00 508 .. 10630 1-604 32 1-301 1:799
1-40 356 ‘0510 .. 1-294 27 1'146 1-707
1-32 335 .. 0486 1-234 » 1120 1-687
1-10 280 0394 .. 1-000 28 1-041 1:595
0-83 21'06 .. 0380 0-965 22 0919 1-580
065 16-51 -0304 .. 0-762 21 0-812 1-482
0-52 1321 . 10290 0-736 18 0716 1-462
0-40 10-16 0250 .. 0635 16 0-544 1-:392
0-39 901 .. 0220 0559 17 0-531 1-342
028 711 0192 .. 0488 14 0361 1-283
s » .. 0180 0457 14 0-361 1255
020 508 ‘0168 . 0427 12 0-301 1-225
019 4-82 .. 0146 0-371 12 0278 1-164
015 381 ‘0154 o 0-391 10 0176 1-187
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TaBrLe IX.—Thermal transpiration of hydrogen by meerschaum plate No. 3 (*44 inch
or 11'2 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature
of water, 63° F. or 17° C., May 15 and 18; temperature of water, 65° F. or 18° C.,
July 10.

Difference of pressure by siphon gauge. | Ratio of mean Tog of
Mean pressure by vacuum pressure to | Log of mean | 5. 08 0 "
gauge. difference of | pressure. uterence o
May 15. May 18. July 10. pressure. pressure.
inches. millims, inch. inch. inch. millims.

3500 8890 . .. 7940 20-17 44 2:544—11| 2:900—3
3400 8636 . 7930 . 2014 43 2531 2-899
32:00 812-8 7930 .. .. 20-14 40 2:505 2-899
30-00 7620 .. 7670 .. 19-48 39 2:477 2-885
2950 749'3 7760 . .. 19-71 38 2:470 2-889
) . .. w76 | 1975 37 N 2:890
27:50 6985 *7600 .. .. 19-30 36 2-439 2-880
2200 5588 6914 ‘e .. 17:56 32 2342 2-840
1850 4699 . 6250 .. 15-87 295 2267 2:795
18-00 4572 | 5710 .. .. 14¢50 31 2255 2:757
. . . » 5960 | 1514 30 2255 2775
12-00 304-8 .. . 4800 12-19 25 2:070 2-681
1140 2896 - 4626 . 1175 24-6 2:056 2664
1050 2667 4156 .. .. 10-56 25 2-021 2-618
770 1956 . .. *3594 913 21 1-886 2:555
760 1930 . 3160 . 803 24 1-880 2:500
695 1765 *3046 . . 774 23 1-842 2-4:84
475 1206 .. 2206 . 560 23 1-676 2343
» v . -, 2584 657 18 ’ 2412
450 114-3 2120 . .. 538 21 1653 2326
300 762 . ‘1568 .. 398 19 1-477 2-200
N .. 3 1784 453 17 N 2251
2:60 660 1420 .. . 360 18 1-414 2152
195 496 .. . 1204 3:06 16 1-290 2-080
1-70 43-2 1063 . .. 2:70 16 1-230 2026
1-25 318 . .. 0784 1991 - 16 1096 1-894
110 27:95 .. 0630 . 1-600 17 1-041 1:799
1-:00 2540 0660 SN - - 1676 15 1-:000 1-819
0-70 17-78 .. . 0380 0965 18 0845 1-580
065 16-51 .. . 0325 . 0-825 20 0-813 1-511
0-60 1526 -0380 .. . 0-965 15 0-778 1-500
035 888 . 0250 . 0-635 14 0544 1-297
0-32 813 0200 .. .. 0-580 16 0-505 1-301
0175 .. ‘0150 .. .. 0-381 12 0-243 1176

Although this plate was so much thicker than meerschaum plate No. 2, the results
were no greater. They appear rather less, but this was owing to the somewhat higher
temperature of the water, which would reduce the results in Table IV. in the ratio
8 to 9, and when this correction is applied the agreement is very close.

Effect of the thickness of the plate.

26. It had been expected, however, that the extra thickness of the plate No. 3
would have caused it to give somewhat higher results, and its not doing so seemed to
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imply that the plates were so thick that the conduction of heat through the plate
produced no appreciable effect on the temperature of the surfaces of the meerschaum.
It appeared, however, from subsequent experiments that in all probability there was a
small difference in the two instruments. The original instrument, that in which the
experiments on plate No. 2 were made, had been used a great deal, and the surfaces
of the tin plates which were opposite to the meerschaum had lost all their polish and
become black, while in the second instrument the plates were new and bright. It
might, therefore, be expected that the old plates would radiate more heat than the
bright plates, and so better maintain the difference of temperature, and besides this
the india-rubber rings in the new instrument were somewhat thicker than those in the
old one, and so the space between the plates and the surface of the meerschaum was
greater than in the old instrument. It appears, therefore, that these causes may have
neutralised the increase in the difference of temperature that would otherwise have
resulted from the extra thickness of the plate. And it will be seen that this conclu-
sion was confirmed when on introducing a new stucco plate into the old instrument
new tin plates and thicker rings were also introduced.

Infusion of air.

The curves, fig. 5, show the degree of regularity attained in these experiments.
Such discrepancies as there are, are apparently owing to the absorption and exhalation
of the gas by the india-rubber and possibly by the plate itself, for these discrepancies
only occur at the lower pressures.

Fig. 5.

In the case of hydrogen the greatest care was taken to get the gas pure; but it is
not to be supposed that as the gas was pumped out the residual gas would maintain a
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high degree of purity, for the gases given off by the india-rubber and the air which
diffused through it would gradually replace the hydrogen.

Corresponding pressures with stucco No. 1 and meerschaum No. 3.

27. Comparing the ratio columns in Tables VIIL and 1X. with the corresponding
columns in Tables VI. and VIL respectively, the corresponding pressures are found to
be as shown in Tables X. and XI.

TaprLe X.—Showing the pressures of air for which the ratio of the difference of
pressure to the mean pressure is the same for stucco No. 1 and meerschaum

No. 3.

Ratio of mean i
pressure Mee}lr'?h; o Stucco No. 1. coria;tlgn(:ifin
to difference of Pressure. Progsure. Presgures ¢
pressure, ’
inches. inches.

141 310 51 6°08

116 24c5 40 61

108 230 37 6-2

104 21-50 35 61
94 2000 30 6:6
99 1950 325 6:0
85 18:00 26 69
90 1700 2:8 605
70 115 1-8 63
57 825 115 70
59 7-8 125 62
44 525 05 105
Ade 4°70 05 90
37 340 0:35 9'9
38 310 035 9:0
29 2:10 0-24 85
32 2:00 0-301 66
97 1-40 020 70
o 1-32 0-20 6:0

MDCCCLXXTX, 5D
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TasLe XI.—Showing the pressures of hydrogen at which the ratio of the difference
of pressure to the mean pressure is the same for meerschaum No. 8 and stucco

No. 1.

Ratio of mean Corresponding pressures. Ratio of
pressure to corresponding
difference of Meerschaum Stuceo pressures.

pressure. - No. 3. No. 1.
inches. inches.
44 35 58 60
43 34 55 62
40 32 50 64
39 30 48 62
38 295 46 64
37 295 404 67
36 27 42 64
32 22 34 64
295 185 249 63
31 18 32 56
30 18 3:0 6:0
25 12 2:0 60
24:6 11°40 19 60
25 11'50 2:0 525
21 7:70 80 9:7
24, 760 17 45

In Tables X. and XI. the first columns are the ratios taken direct from Tables VIIL.
and IX., the second columns are the pressures also taken direct from Tables VIII.
and IX.

In order to find the pressures with the stucco plate which would yield exactly the
same ratios (difference of pressure to mean pressure) as those in the table, the numbers
in the ratio columns of Tables VI, and VII were plotted, the mean pressures being
taken as abscissee. The points were joined so as to form curves, and then finding
points on the curve whose ordinates corresponded to a particular number in the first
column, the abscissze gave the numbers required for the third column in Tables X.
and XI. In this way the numbers in the third column are rather more uniform than
they would have been had they been the results of actual observation.

Tables X. and XI. show that within the limits of accuracy of the experiments the
pressures in the stucco correspond with pressures in the meerschaum six times as
great. This is exactly according to Law V., Art. 7, from which it appears that the
numerical relation between the corresponding pressures is the relation between the
diameters of the interstices of the meerschaum and stucco plates. This fact also is
confirmed, for not only does it appear that the ratio is independent of the mean
density of the gas, but it is the same for hydrogen as it is for air, showing that the
relation depends only on the nature of the plates,
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Logarithmic homologues of the curves in figs. 4 and 5.

28. It appeared, however, that as a method of obtaining the corresponding pressures
the comparison of the ratios was not entirely satisfactory, for it involved the assump-
tion that the ratio of corresponding differences of pressure should be exactly the same
as the ratio of corresponding mean pressures; whereas this would only be the case if
the differences of temperature were exactly the same for both plates. It seemed
desirable therefore to find a means of comparing the curves for the two plates on the
assumption that the corresponding abscissee might bear one ratio and the corresponding
ordinates another, or if 1 and 2 are corresponding points, x,=ax, while y,=by,.

A graphic method of doing this simply and perfectly was found by comparing not
the curves themselves, but what may be called their logarithmic homologues.

Instead of plotting, as in figs. 3 and 4, the mean pressures and differences of pressure
as the abscissee and ordinates of the points on the curve, the logarithms of these
quantities are plotted. Thus, «’,=log «;, ¥';= log y;, where xy;, may be taken to be
a point on any one of the curves already plotted, and x"jy"; the corresponding point
on the logarithmic homologue. It is thus seen that if for two curves (1) and (2),
wy=ax, and y,=by,, then «’,=a",+ loga and y,=y" 1+ logb; or the logarithmic
homologues will all be similar curves but differently placed with regard to the axes,
such that the one curve may be brought into coincidence with the other by a shift of
which the coordinates are log ¢ log b,

nH j~
Fig. 6.

Difference of pressure.

Log.

Log. Pressure.

Fig. 6 shows the logarithmic homologues of the curves for stucco No. 1 and meer-
schaum No. 8 both for hydrogen and air. By tracing the log curves for stucco No. 1,
together with the axes, on a piece of tracing paper, and then moving the tracing (so
that the axes remain parallel to their original direction) until the traced curves fit on
to the curves for meerschaum No. 8, it is found that the fit is perfect, a portion of
the traced curve ¢’ f’ (stucco) coinciding with a portion of @ b, while at the same time

5 D 2
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a portion of the traced curve ¢’ coincides with a portion of ¢ d. The effect of the
superposition is shown in the figure, ¢’ b and ¢’ d being the portions of the curves
which overlap. O’ is the new position of O.
It will at once be seen that O’ M is the logarithm of the ratio of corresponding
abscissee, while O’ N is the logarithm of the corresponding ordinates.
In this particular case
O'N=7 =log. 5
0" M="77=log. 59.

These numbers differ somewhat from those given by Tables X. and XI., and the
difference is very suggestive. The absolute agreement of the curves shows that the
difference is not owing to experimental inaccuracy, and it will be seen on comparing
the results next given that the difference (5 and 5'9) is owing to a difference in the
temperature in the two instruments. If the temperatures had been the same we
should have had the same ratio for the corresponding ordinates as for the abscissz ;
but a difference in the temperature would alter all the ordinates in a certain ratio
without affecting the abscissze.

The difference O’ N—O’" M="07=log 1175 gives the ratio in which the differences
of pressure are affected by a difference in temperature. This, according to the law
that the results are proportional to the square roots of the differences of temperature,
would be equivalent to a difference of 21° in the temperature of the water. This
difference did not exist, hence there must have been a difference, owing to the greater
thickness or to the different nature of the meerschaum plate.

The size of the woodcut does not admit the points indicating the actual experiments
being shown, but these are shown in the larger figures, Plates 48 and 49.

Stucco plate No. 2.

29. These facts will be better understood after examining the experiments on a second
stucco plate. The trial of this plate was owing to an accident to the diffusiometer
containing stucco plate No. 1. The diffusiometer was thereupon refitted with another
plate similar to No. 1; but the old tin plates were replaced by new bright ones, and
the new india-rubber rings were somewhat thicker than the old ones.
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TaBLE XIL—Thermal transpiration of air by stucco plate No. 2 (-25 inch or 635

millims, thick).
70° F. or 21° C.

Temperature of steam, 212° F. or 100° C.; temperature of water,

Difference of pressure by siphon gauge. Ratio of

Mean pressure by vacuum P by e Bme mean pressure to | Log of mean | .. fELog of of

gauge. : difference of Pressure, | ©'-orence
July 17. July 18. pressure. pressure.
inches. millims. inch. inch. millim,

3025 7683 0160 .. 406 1892 2:480—1| 1-204—3
3005 7633 . 0162 411 1855 2:477 1209
2805 7124 0166 .. 422 1710 2448 1-220
2725 6921 .. 0170 *432 1600 2-435 1-230
2585 6566 0176 .. 447 1470 2:412 1-245
24-90 6324 .. *0180 457 1383 2:396 1-255
23-15 588 0196 .. 498 1181 2-364 1-292
22-05 560 . 0194 492 1137 2:343 1-287
20-30 5156 - -0208 .. *528 976 2:307 1-318
19-20 4874 . ‘0204 518 946 2:283 1-:309
1800 4572 *0230 . *584 784 2:255 1-361
16-10 40894 0240 . 610 670 2207 1-380
158 401-32 - ‘0230 *584 680 2199 1-361
14:0 3556 ‘0254 . 645 551 2:146 1-404
13-80 35052 . *0244 620 565 2140 1-387
12-45 3162 0266 . *676 453 2:095 1-425
11-85 301-00 .. 0256 650 462 2:073 1-408
10-82 2748 0276 . 701 391 2:034 1-440
10-05 255°2 . 0262 660 383 2-002 1-418
9-80 2489 0282 . ‘716 348 1991 1:450
910 2311 . 0272 691 334 1959 1-434
875 2221 -0284 .. 721 308 1-942 1:453
810 2057 - 0280 711 290 1908 1-447
765 194-3 -0290 - "736 264 1-883 1-462
715 1816 .. 0284 721 252 1-853 1-453
672 1707 0294 . 746 229 1-817 1-468
6-20 157-5 .. 0288 731 215 1-791 1-459
550 1397 0290 .o "746 190 1:740 1:462
525 183-3 o 0286 726 183 1-720 1-456
4-40 111-7 -0280 .. 711 157 1-643 1-447
430 109-2 .. 0276 701 156 1:633 1-440
3-40 864 0266 .. 676 128 1-531 1-422
3-35 851 .. 0264 671 127 1:525 1-421
2:70 686 0242 .. 615 112 1-431 1-381
2:40 6096 e 0226 574 106 1-380 1-354
200 50-8 0214 . *543 93 1:301 1:330
1-45 368 .. 0182 462 80 1-161 1-266
1-22 31-00 0176 .. 447 70 - 1086 1-245
*80 20-82 0138 .. *350 58 0903 1-139
50 12-70 . 0108 274 48 0-699 1033
*38 965 .o 0088 223 42 0-580 0944
225 571 *0050 . 127 45 0352 0699
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TasLe XIIL—Thermal transpiration of hydrogen by stucco plate No. 2 (25 inch or
6'35 millims. thick). Temperature of steam, 212° F. or 100° C.; temperature of
water, 70° F. or 21° C.

Difference of pressure by siphon gauge. Ratio of
Mean pressure by vacuum | ! vew ¢ 7gﬁ mean pressure to | Log of mean diff]gl?e%lgj of
gauge. difference of pressure.
July 19. July 20. pressure, pressure.
inches. millims. ine. inch. millims,

3100 787°40 . ‘1072 2:723 290 2:491—1| .2:030—3
30°55 77550 -1080 . 2:743 283 2484 2033
2960 75160 . 1084 2753 273 2:456 2:035
2810 71370 . 1102 2799 255 2-449 2:042
2670 677-90 . ‘1122 2:850 - 237 2-426 2050
2550 64750 o 1132 2-875 225 2406 2054
2525 641-00 ‘1130 . 2:870 223 2402 2:053
24:15 613-40 - 1152 2:916 209 2:383 2-061
22-40 56890 1180 . 2:997 190 2:350 2:072
2205 560°00 .. ‘1176 2:977 188 2-343 2+070
21°10 535-90 .. 1182 3:002 177 2-324 2072
2015 51050 .. 1186 3012 170 2:304 2:074
2000 508:00 1192 .. 3-:027 168 2:301 2:076
19-20 48760 .. 1190 3:023 160 2:283 2:075
17:15 43560 - 1204 3058 142 2234 2080
16-20 411-40 . 1208 3068 134 2-209 2082
16:00 40640 1214 .. 3:083 130 2-204 2:084
15-30 388 60 . ‘1214 » 126 2185 2:084
14-60 370°80 » 1220 3098 119 2164 2:086
14-55 369-50 1220 . ” ’ 2163 2-086
13-95 35430 .. 1220 ' 114 2:144 2-086
13-20 33520 ‘1212 . 3078 . 108 2-120 2-083
12-35 31770 .. ‘1216 3088 101 2-091 2085
11-95 281-80 1200 1200 3-048 100 2:077 2070
10-70 271-80 1198 .. 3:043 89 2-029 2-087
960 24380 1176 .. 2-987 80 1-982 2-070
865 219-70 *1146 . 2910 75 1-937 2:059
775 19680 1120 . 2844 69 1-889 2:049
6:30 16000 1064 . 2:702 : 60 1-799 2:027
575 146°00 . +1000 2-540 56 1-759 2:000
510 129-50 0976 .. 2:479 52 1-700 1-989
365 92-70 . 0854 2:169 42 1-562 1-931
3-40 86-30 . -0860 2-184 40 1-531 1-934
2-50 63-50 0704 .. 1-788 35 1-398 1-847
1-60 4000 o 0524 1-331 30 1-204 1-719
1-10 2790 . 0420 1-066 26 1-041 1-623
‘35 8-88 0170 . 431 20 0544 1-230

In making the experiments contained in Tables XII. and XIII., there was a slight
change from the former plan, which had been to begin at the higher pressures and
thence proceed by successive exhaustions to the lower pressures. This time one series
of experiments was made as before, and another in the inverse manner—the diffusio-
meter being exhausted to commence with and the air or hydrogen being allowed to
enter between the observations. Both series are given in the tables and are seen to
agree very closely.

In the case of hydrogen it was found as before, that although not great, there was
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still a greater tendency to irregularity than with air, and as this was evidently due
to diffusion through the india-rubber during the very considerable time (4 or 5 hours)
which elapsed before the lower pressures were reached, several independent experi-
ments were made. The diffusiometer being filled with pure hydrogen, was exhausted
at once down to the particular low pressure at which the reading was taken, so as not
to allow time for diffusion.

Differences of temperature brought to light by the log. curves.

80. The results with stucco plate No. 2 are smaller than with No. 1. At first sight
it was thought that this difference was entirely owing to No. 2 being somewhat
coarser than No. 1, but when the logarithmic homologues of the curves for this plate
came to be compared with those for No. 1 and meerschaum No. 8, after the manner
described in Art. 28, it became apparent that the difference in the results with plates
No. 1 and 2 (stucco) was due to two causes. Some of it was due, as had been supposed,
to the greater coarseness of No. 2, but a large part could only be explained on the
assumption that from some cause or another the difference of temperature with No, 2
was less than with No. 1.

Fig. 7.

Log. Difference of pressure.

Log. Pressure.

In fig. 7 it is seen that in order to bring the log. curves for stucco No. 2 into
coincidence with the curves for stucco No. 1, it was necessary to increase the abscissee
of the former by ‘048 —log. 1-117 : while the ordinates had to be increased by -112.
The difference in the abscissee, as shown in Art. 28, represents the difference due to
the coarseness of the plate ; thus the openings in No. 2 are 1'117 times as broad as the
openings in No. 1. And the difference between the differences of the ordinates and the
abscissee ='112—'048="064=Ilog. 1°16 is the logarithm of the effect of a difference of
temperature, and to produce this effect the temperature of the water would have had
to be lowered 15°. There was some difference, from 5° to 7°, leaving from 8° to 10°
to be expressed as due to the bright tin plates and thicker rings.
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Comparison of the logarithmic homologues.

31. In Plates 48 and 49 the curves for meerschaum are drawn in the same position
with reference to the axis, O M, O N. But while in Plate 48 the curves for stucco
No. 1 and No. 2 are shown in the position as plotted from the columns of logarithms
in the Tables V1., VII., XII. and XIII., in Plate 49, these curves have all been shifted
until they coincide with the curves for meerschaum No. 8, in each case the two
curves for air and hydrogen being shifted together. The axes are also shown as shifted
with each pair of curves. The fitting of these curves is very remarkable ; nor is it
only the curves, for the points indicating the results are shown, and these all fall in so
truly that it was hardly necessary to draw a line until the points of low pressure are
reached. There is a slight deviation of that part of the curve for hydrogen, stucco
No. 1, which represents the pressures below 1 inch; but this has been already ex-
plained as being due to the infusion of air through the india-rubber. In order to fully
appreciate the force of this agreement, it must be borne in mind that it is not merely
the portions of the curves that overlap that agree in direction, but the distance
between the curves for hydrogen and air which have been shifted in pairs.

Nothing could prove more forcibly than this, that the different results obtained with
different plates are quite independent of the nature of the gas so long as the densities
are in the ratio of the fineness of the plates.

So far, therefore, as thermal transpiration is concerned, we have an absolute proof of

Law V., Art. 9.

The relative coarseness of the plates.

The shifts in Plate 49 to bring the curves into coincidence being the logarithms of
the corresponding pressures, it follows from Law V. that these shifts are the logarithms
of the relative coarseness of the plates. Hence for the mean (after some law)
diameters of the apertures we have :

Plate. Coarseness.
Meerschaum No. 3 . . . . . 1
StuccoNo. 1 . . . . . . . 5
Stucco No. 2 . . . . . . . 56

Further comparison of the results with the laws of Art. 9.

82. So far as the manner of variation of the differences of pressures with the density
of the gas, this is completely shown by the shapes of the curves in figs. 3, 4, and 5,
and is strictly according to Laws II. and IIL

The agreement of the log. curves has been shown to confirm Law V. It only remains,
therefore, to notice the laws of variation at the greatest and smallest pressures, to see
how far these conform to the limits given in Laws IIT and IV.
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According to Law IIL, when the density of the gas is sufficient, the differences of
pressure should be inversely proportional to the density.

Hence, according to this law, the product of the pressure into the difference of
pressure should approximate to a constant quantity as the density increases.

In the case of stucco No. 2, we have, adding the two tables of logarithms, sub-
tracting *684—1=log. ‘483, and taking out the numbers

i Pressure x difference

‘! of pressure—--183,

|
.

Pressure.

5025 1

30°05 1-004
2805 ‘964
27-25 957
2585 *940
24-90 927
2315 9338

This sufficiently shows that the approximation is very close and according to Law IIL

Coming now to the lower pressures, it will at once be seen that in all cases there is a
tendency towards constancy. This is best seen in Plate 49, where the curves not only
converge towards the left but turn towards the horizontal.

It is clear, however, from these curves, that the limit had not been reached, nor is
it possible to say simply from the shape of the curves how far it might be off.

The following comparison, however, will show that the indication is in favour of
Law IV., viz.: that the ultimate ratio which the difference of pressure bears to the mean
pressure should be as the ratio which the difference of the square roots of the absolute
temperature bears to the square root of the mean absolute temperature. According to
this, we should have in the case of the meerschaum plate the ratio of the difference of
pressure to the mean pressure equal

/12461 — /63 +461__1
V1375 1461 8

whereas, supposing that there was a difference of 20° between the surfaces of the
meerschaum and the opposite tin plates

/1924461 —,/83+461_ 1
A/137'5+461 1

between which values it is probable that the actual ratio lies.

The highest ratio of the difference of pressure to the mean pressure obtained is 1 to
13, and this may well be considered as an approximation to 1 to 11.

Thus, not only in their general features, but in the approximation towards definite
limits, the experimental results show a close agreement with the laws as deduced from
the theory.

MDCCCLXXIX. b B
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SeEcTiON III.--EXPERIMENTS RESPECTING THE RATE OF TRANSPIRATION.

33. The experiments to be described in this section, besides being necessary for
the verification of the Laws V., VI.,and VIL, Art. 9, were necessary to complete the
verification of Law I. In the last section no direct notice was taken of the rate of
thermal transpiration when unprevented by the difference of pressure on the two sides
of the plate, and for this reason. ,

Although the thermal differences of pressure indicate in a general way the manner
in which transpiration would have taken place had the pressure been equal, yet in
order to examine the results strictly, as regards the various rates of thermal transpi-
ration to which they correspond, it is necessary to know the exact law of transpiration
for gases under pressure. The comparative rates of transpiration for different gases
and the rates of transpiration of each gas for different pressures are not sufficient. So
far, the laws established by GRamAM are all that can be desired, but these laws say
nothing about the variation in the rate of transpiration consequent on a large variation
in the density of the gas. Thus, GRaAHAM has shown that, through a fine graphite
plate, the time of transpiration of a constant volume (measured at the mean pressure)
will be exactly proportional to the difference of pressure, and will diminish slightly
with the density, but his experiments were not carried to pressures many times less
than the pressure of the atmosphere ; whereas, for the purpose of this investigation, it
was necessary to compare results at pressures as low as "01 of an atmosphere. Nor ig
this the only point in which GRABAM’S results appeared insufficient for the present
comparison. GrAmAM had found that the law of transpiration for a fine graphite
plate differed essentially from the law for a stucco plate ; his experiments having been
made in both cases at pressure not many times less than the pressure of the atmosphere.
Thus, for the stucco plate, the comparative times of transpiration of air and hydrogen
were as 2°8 to 1, while for the graphite plate they were as 3-8 to 1. He had also
shown that for plates of intermediate coarseness an intermediate ratio would maintain ;
but he had given no law that would enable us to predict the result with any parti-
cular plate.

In order, therefore, to effect my comparison, it was necessary, by actual experiment,
to ascertain the rates of transpiration through my particular plates with the same
gases as those used for thermal transpiration, and at similar pressures. It was this
consideration which mainly determined the manner of making the experiments,

The apparatus.

34. The thermo-diffusiometer, without the streams of steam and water, after having
undergone certain slight modifications, lent itself very well to this part of the
investigation.

By means of extra branches from the tube KK, fig. 2, two 8 oz flasks were con-
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nected with the chambers, one on each side of the porous plate, the object of these
flasks being simply to enlarge the capacity of the chambers,

The branch to the flask on the right was outside the tap P, so that by closing this
tap the flask would be cut off from the instrument, and the action of the pump would
be confined to that one flask.

In this condition the mercury pump had a definite capacity-—about 6 fluid oz., the
capacity of the flasks was definite—about 8 fluid oz each, and besides these there were
the tubes and chambers in the diffusiometer also of definite capacity—about 3 oz. on
each side of the plate.

The vacuum gauge was cut off during these experiments, so that the movement of
the mercury in the siphon gauge constituted the only source of variation in capacity,
and this was small.

This constancy in the capacity of the several parts of the apparatus, if not absolutely
essential for these experiments, was very important, as it did away with the necessity
of any process of reduction in comparing the results of the experiments at different
pressures. This may be seen as follows.

Equal volumes.

35. Starting with the pump full of mercury, and the taps open so that the pressure,
whatever it might be, is the same throughout the instrument, both taps being then
closed, one stroke of the pump draws a definite proportion of the entire air in the
instrument out of the right-hand flask, lowering the pressure in this flask in a definite
ratio. Or in other words, one stroke of the pump withdraws from the flask on the
right a definite volume of gas as measured at the pressure in the instrument.

This condition would be maintained until the tap P, between the right-hand flask
and the instrument, was opened. Then the pressure on the right hand side of the
porous plate would fall in a definite ratio. Transpiration would commence, and by the
time the pressure on the two sides of the plate had again become equal, a definite
volume of air, about half that withdrawn by the pump, must have passed through the
porous plate.

The time from the opening of the tap, before complete equalisation is effected, is
then seen to be the time of transpiration of a definite volume of gas measured at
either the initial or the final pressures in the instrument, under differences of pressure
which, although varying, are at corresponding stages proportional to the initial or
final pressures in the instrument.

This time, which is called by GraHAM the time of transpiration of equal volumes, is
directly measured in these experiments.

Measurement of the time.

36. The time at which transpiration commenced was the time at which the tap was
opened, the tap and the tubes being sufficiently large to allow almost instantaneous
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adjustment of the pressures on the right of the porous plate. On first opening the
tap P, the mercury in the siphon gauge was displaced, and as equalisation was re-
established the mercury re-assumed its level position, the instant of complete transpi-
ration being that at which the mercury became level.

The final adjustment of the mercury, however, was very slow, and it was not found
possible, even with the cathetometer, to ascertain definitely the instant of complete
equalisation. This threatened to be a difficulty, but it was finally overcome in a very
simple manner.

Instead of waiting for complete equalisation, the time was taken at which the
equalisation had proceeded, until the residual excess of pressure to the left of the
plate bore a certain relation to the initial absolute pressure—'002 was the proportion
allowed.

It will be seen that in this way the volume which passed, instead of being the
volume for complete equalisation, was some definite proportion of this, and that the
differences of pressure under which it passed were proportional to the initial difference
of pressure, and hence the time occupied was the time of transpiration of equal
volumes according to the previous definition.

The manner of experimenting.

387. The temperature of the room in which the diffusiometer was, having been read,
the pump being full of mercury, and the taps D and P open so as to allow of complete
equalisation through all the chambers of the instrument, the experiment commenced.
The vacuum gauge was read ; this gave the initial pressure in the instrument. The
position of the mercury on the left side of the differential gauge was then read with
the cathetometer..

From this reading was subtracted ‘001 of the reading on the vacuum gauge, t.e., the
micrometer screw was turned through ten divisions for every inch pressure in the
instrument.

The vacuum gauge was then cut off by pinching the india-rubber tubing ; the taps
P and D closed ; one stroke of the pump was taken; a definite volume of air being
thus drawn out of the flask, the pump was replaced so as to be full of mercury. Then
at a given second, marked by a chronometer, the tap P was opened. A watch was
then kept through the cathetometer, until the mercury in the differential gauge
descended to line in the cathetometer. As the mercury was still in motion, this instant
was well marked by merely raising the eyes to the chronometer.

The small losses of time (personal equations) between reading the chronometer and
opening the tap, and reading the cathetometer and the chronometer, were determined
as approximately equal to one second, which was accordingly subtracted from the time
noticed.

In one set of experiments, that of hydrogen through stucco, the time of equalisation
was so small (between 20 and 30 seconds) that a fraction of a second became a matter
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of some importance, and as the instant at which the eye reached the chronometer did
not always correspond with the complete second or half second, there was a liability
to this error; but this was to some extent obviated by making successive experiments
for such small differences of pressure, that the differences in the reading were much
less than a second, and passing over all the observations except those which corre-
sponded with the beat of the chronometer.

With the stucco plates, both for air and hydrogen, three series of readings were
taken, and the agreement was found to be very close. ‘

With the meerschaum, the interval of transpiration was so long, about 12 minutes
for air and about 3 minutes for hydrogen, that one series of experiments was considered
to be sufficient.

It is important to notice here, that while making these experiments I had not the
least idea as to how the results would come out when they came to be compared. This
comparison was not made for several weeks, as the logarithmic method of comparing
them had not occurred to me at the time the experiments were made.

The very remarkable agreement which has been found in the results cannot, there-
fore, be owing to any bias in my mind, but must be entirely attributed to the accuracy
of the means of observation.

Purity of gases.

38. The greatest care was taken to get the gas pure and dry. And as it had been
found in the previous experiments that when the pressure in the instrument was low,
the gas, particularly the hydrogen, was liable to become contaminated by infusion
through the india-rubber, the experiments were not continued to very low pressures
and were made as rapidly as possible.

The results of the experiments.

39. Two plates were tried, meerschaum No. 3 and stucco No. 2, which were both
in their respective diffusiometers just as they had been used for thermal transpiration.
The results are given in the following tables :—



764 PROFESSOR O. REYNOLDS ON CHRTAIN DIMENSIONAL

Tasre XIV.—Time of transpiration of equal volumes of air at different pressures
through stucco plate No. 2.

Time f)f )
P{:;gﬁlo tmn:&f:;g‘; nom Log of pressure. Tog of time.
July, 1878.
inches.

3010 5405 1:478 1-7364
2995 55 1476 . 17404
2625 58 1418 17634
26-15 60 1416 17781
2295 62 1-36 1-7924
20°50 65 1-31 1:8129
19-90 66 1-30 1-8195
1775 68 1-25 1:8325
1540 72 119 1-8573
1345 75 113 1:8750
11-60 79 106 : 18976
10:05 82 100 1-9138
875 85 94 1-9294
590 90 77 1:9542
535 93 73 1:9684:
520 92 72 1-9638
475 95 68 1-9777
4:50 95 65 19777
3:90 97 59 19867
3:85 97 58 1-9867
340 93 53 1-9912
2:95 100 47 2:0000
2:50 101 40 2:004.0
95 102 08—1 2:0128

TaBLe XV.—Time of transpiration of equal volumes of hydrogen at different pressures
through stucco plate No. 2.

Pressures before . Ti?r,]e of Log of Tog of ti
transpiration. tmnssgclz)itngl n 0g of pressure. og of time.

inches.

3010 19 1-48 1-2787

26-30 20 1-42 1-3010

186 21 1-27 1:3222
7'35 25 0-87 1-3979
5750 26 074 14149
415 27 0-61 1:4313
375 28 057 1-4471
135 28'5 0-13 1:4540
1-20 285 0-08 1-4540
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TaBLe XVI.—Time of transpiration of equal volumes of air at different pressures
through meerschaum plate No. 2.

| 1
i ‘ Time of ;
Initial . transpiration in i Log of pressure. Log of time.

pressure. seconds. :

inches. | |
30 i 674 ; 1-477 2-8286
1510 | 716 | 1179 2:8549
12-75 g 720 | 1-105 2:8573
11-25 | 724 1-051 2:8579
640 725 L1806 2:8600
G-00 | 725 % 1:792 2-8603

TaBLe XVIIL—Time of transpiration of equal volumes of hydrogen at different
pressures through meerschaum plate No. 3.

. ’ ~ Time of
Initial | transpiration in | Log of pressure. Log of time.
pressure. | seconds. ‘
T | !
inches. : |
325 ! 187 ‘ 1:5118 2-27184
1325 ‘; 198 | 11222 229665
12-40 5 198 | 1-0934 229666
4:05 | 200 ; 16074 2-30103
385 | 200 1 15854 2:30103

From these tables it appears that the transpiration times at pressures nearly equal
to that of the atmosphere are for air and hydrogen, through stucco, as 55 to 19, as 2'9
to 1, while through meerschaum they are as 86 to 1.

GramaM found the ratio for stucco 28 to 1, and for graphite 38 to 1.

The small difference between these numbers may be well explained by supposing, as
is quite probable, that the stucco used by GrAHAM was rather coarser than plate
No. 2, also that the graphite was finer than the meerschaum ; but even allowing the
difference, the present results are in very fair accord with GrAHAM’s as far as the
conditions of pressure corresponded.

When, however, we come to compare the times for air and hydrogen at lower
pressures, we see that not only does this ratio differ very greatly from that obtained
by Gramam for stucco, but that it approaches what he obtained with graphite. Thus
at a pressure of 4 inches the ratio of the times are as 96 to 27, as 3'56 to 1, or they
are the same as with the meerschaum at the pressure of the atmosphere. For lower
pressures we have indications of a still higher ratio. Thus at 1 inch the ratio is 103
to 28*5, or 362 to 1.

In the same way we see that with the meerschaum as the pressure falls we have an
increase in the difference of the times for air and Lydrogen.
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This variation in the comparative times for air and hydrogen is strictly in accordance
with Law VI., Art. 9, as is also the manner of variation, as the pressure falls, of the
times for each particular gas. These variations indicate that there are certain pressures
for the stucco plate corresponding with certain other pressures for the meerschaum, at
which the relation between the times for hydrogen and air are equal, and the variation
of these times with the pressure similar.

Logarithmac homologues.

40. To test this, the logarithms of the pressures and times are plotted, and curves
drawn, as explained in Art. 28. These are shown in fig. 8.

Fig. 8.

Times of transpiration in seconds.

a b and ¢ d are the curves for air and hydrogen through meerschaum, ¢ f'and g b are
the curves for air and hydrogen through stucco. The figure consisting of the two
curves e fand ¢ A is found to fit on to the figure consisting of @ b and ¢ d, the displace=
ment being from e fand g h to ¢ " g’ h'.  The scale of the figure is too small to allow
of the position of the points marking the experiments being shown, but these are
shown in the larger figure, diagram 1, Plate 47.

The agreement is there seen to be very close—the very considerable portions of the
curves which overlap coming into actual coincidence.
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As previously explained with reference to the log. curves for thermal transpiration,
the displacement O M in the direction of the abscisse represents the logarithm of the
ratio of corresponding préssures, while the displacement O N in the ordinates represents
the log of the ratio of the corresponding times for the two plates. This latter ratio
cannot be made use of for the sake of comparison, as it involves the number of
openings through the plate as well as their diameters.

The relative coarseness of the plates.

41. The ratio of the corresponding pressures, as given by the difference in the
abscisse, is of the greatest importance. This ratio, according to Law V., Art. 9,
corresponds with the ratio for the coarseness of the plates, and as these were the same
plates as were used in thermal transpiration, it was to be expected that the results
should agree; that is to say, the displacement O’M, fig. 8, should be equal to the
displacement O'M, fig. 6. The actual measures give

For thermal transpiration, O'M="748=log 5'6
»» transpiration under pressure, O'M=-819=log 6°5

By this comparison the two independent and distinct experimental results check
one another. ‘

The difference in the results, although too small to cast a doubt upon their agree-
ment, is too large to be attributed to experimental inaccuracy. But it must be
remembered that the conditions under which the plates are compared differs in an
important particular. In the experiments on thermal transpiration the plates were
heated, whereas in the experiments on transpiration under pressure they were at the
normal temperatures, and it appears only natural to suppose that such a difference of
temperature would somewhat alter the condition of the plate (see Appendix, note 3).

Small densities.

42. It appears very clearly from the curves, that as the pressure of the gas diminishes,
the time of transpiration of equal volumes tends to become constant ; approximate
constancy having been reached in the experiments.

The ultimate ratio of the times of different gases was found by GramAM to be as
the square roots of the atomic weights of the gases, and the same ratio is obtained
for air and hydrogen in these experiments. The square roots of the densities of dry
air and hydrogen are 3'8 (379) to 1. The ratio of the times for air and hydrogen at
the smallest pressures tried is 3:624, and as this is the result for both stucco and
meerschaum the approximation is too close to be questioned, particularly when it
is remembered that the smallest trace of impurity in the gases might cause the
difference. '

MDCCCLXXIX. S F
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Large densities.

43. As the density of the gas increases, the times of transpiration diminish, at first
slowly, and then more rapidly. According to Law VIL, ultimately the time of trans-
piration becomes inversely proportional to the density : this rate was not reached in
the present experiments, the nearest approach being with air through stucco. The
shape of the curves, however, shows that the limit has not been reached.

In order, however, to show that the rate of variation of the times of transpiration of
equal volumes reaches but does not pass beyond the rate of variation of the inverse
density, we have GrRAHAM'S experiments on capillary tubes, this being the exact law
which was found to hold with all the gases and all the tubes. These tubes may be
considered as corresponding with an extremely coarse plate.

GRAHAM'S results reconciled.

44. Tt is thus seen how the apparently different laws obtained by Gramam for
capillary tubes and plates of different coarseness, which led him to suppose that the
passage of the gas through the finer plates more nearly resembled effusion than
transpiration, are all reconciled and brought under one general law, involving, besides
the nature of the gas, nothing but the ratio which the density of the gas bears to the
fineness of the plate. |

The verification of Law I.

45. The deduction of the comparative rates of thermal transpiration which would
have ensued had the tap D in the thermo-diffusiometer have been open, is now only
a matter of calculation. We have only to calculate by Law VI. the comparative rates
of transpiration that would have resulted from the thermal differences of pressure.
Hence it will be seen that Law L. follows from Laws II. and VI., Art. 9, and as these
have both been verified, Law I. has also been verified,

SecTtioN IV.—EXPERIMENTS WITH VERY SMALL VANES.

Iirst expervments.

46. Before commencing the experiments on thermal transpiration described in
Section IL, I made an attempt to ascertain how far were borne out the theoretical
conclusions that the necessity for extremely small pressures in the radiometer was
owing to the comparat,iyely.large size of the vanes, and that with smaller vanes similar
results would be obtained at proportionally higher pressures.

The pressures at which the impulsive force in the radiometer first becomes sensible
is so extremely small that this pressure may be increased several hundred fold without
becoming what may be called sensible—-measureable by a mercurial gauge. So that
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on the assumption that the pressure at which the effect would be apparent, increases
proportionally as the size of the vanes diminishes, it was clear that in order to obtain
the repulsive effect at the pressure of the atmosphere the size of the vanes must be
reduced several thousand times.

The only means of obtaining such small vanes was to suspend a fibre of silk or a
spider line. A single fibre of silk has a diameter of 3g5gth of an inch (about), which
is less than 1g55th the breadth of the vanes of the light mill on which my previous
experiments had been made. But in order that the pressures at which the results
would be sensible might be inversely proportional to the size of the vanes, the vanes
should preserve the same shape; whereas the vanes in the light mill were square,
while the fibre of silk was only narrow in one direction, which would be considerably
to the disadvantage of the fibre of silk. More than this: it appeared probable that
the thinness and transparency of the fibre, together with the cooling action of the air,
would only allow an extremely small difference of temperature to be maintained on its
opposite faces by radiant heat falling on one side ; whereas air currents in the tubes,
which would tend to carry the fibre with them, would be caused by the greater
temperature of the glass on that side of the tube on which was the hot body, and
these, which would be quite independent of the size of the fibre or vane, would
exercise, proportionally, as great an effect on the fibre as on the larger vanes.

For the foregoing reasons a result was hardly probable, but as a preliminary step
I suspended a fibre in a test tube ‘7 inch in diameter and 5 inches long; I then
brought a gas flame near to the tube to see if it would cause any motion in the
fibre, the pressure of the air within the tube being that of the atmosphere.

The result was that the hair moved very slightly and somewhat uncertainly towards
the flame.

As T had more than suspected that such would be the result at the pressure of the
atmosphere, and as I had no means at hand for exhausting the tube, I postponed
further experiments in this direction in order to take up the more promising investi-
gation with the porous plates. When, however, I had concluded this, and succeeded
almost beyond my expectation, I returned to the experiments on the fibre with the
intention of exhausting the tube and using hydrogen as well as air.

Subsequent experiments.

47. These experiments weré commenced on July 24, 1878.

A single fibre of unspun silk, having a thickness of ‘0005 of an inch, was suspended
in a test tube 1 inch in diameter and 7 inches long. The tube was closed with an
india-rubber cork, through which passed a small glass tube to allow of exhaustion ;
this tube was connected with the vacuum gauge and the mercury pump, also with
drying tubes for admitting dry air or hydrogen. A microscope with micrometer eye-
piece reading 1g5goth of an inch (the same as had formed the cathetometer in the
previous experiments) was arranged for the observation of the motion of the fibre.

5 F 2
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The apparatus as arranged is shown in fig. 9, Plate 47.

The tube having been dried was filled with dry air at the pressure of the atmosphere.
A hot body was then brought near it.

In order to secure uniformity in the hot body, a test tube filled with boiling water
was placed on a stand, which stand remained in the same position throughout the
experiment, the water in the test tube being boiled the instant before the tube was
placed on the stand.

The motion of the fibre was then watched through the microscope and measured.

Having ascertained the motion, the heater was removed and the fibre allowed to
return to its normal position, which it always did with more or less exactness.

The tube was then exhausted to a limited extent and the operations repeated.

48. In this way were obtained a series of observations both for air and hydrogen
at various pressures. These are shown in the following tables.

TapLe XVIIL-—Impulsion of fibre of silk in air, August 1, 1878.

Pressure by Motion of the
vacuum gauge. fibre.
inches. inches,
30 —+0930
16 —+0300
8 +00
4 +-0150
2 +-0210
1 +0230
5 +-0390
2 +-0700
-1 +-0830
05 +-0930
025 +-1005

TaBrLe XIX.——Impulsion of fibre of silk in hydrogen, August 1, 1878.

Pressure by Motion of the
vacuum gauge. fibre.

inches. inches.
30 +-0040
16 ++0070

8 + 0100

5 +-0160

2 40310

1 +-0490
40 +-0710

2 +-0880

1 +-1070

Table XVIII. shows that with air the result was negative until a pressure of less
than 8 inches was obtained, it then became positive, and it was measurable at a
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pressure of 4 inches, and then steadily increased as the pressure fell, until for very
small pressures the fibre moved through about 1,000 divisions on the micrometer.
With hydrogen, Table XIX. shows that the results were positive from the pressure
of the atmosphere and for small pressures were somewhat larger than with air.
Although only one series of such observations is recorded in the table, the experi-
ments were repeated several times with each gas. Also a flame was used instead of
a heater, and the results were consistent throughout.

Elevation of the heater.

49. The effect of having the heater at different elevations was carefully studied, for
it was obvious that this would affect the air currents in the tube. It was found,
however, that the elevation of the heater did not produce any effect on the direction
in which the fibre moved at pressures of less than 6 or 8 inches of mercury for air, and
less than 20 inches for hydrogen. For pressures greater than these, considerable
alterations in the elevation of the heater did produce very slight modifications in the
motion of the fibre. ‘

Bending of the fibre.

50. The possibility of the results being due to a tendency of the fibre to bend with
the warmth was also considered. Observations were taken at different points up the
fibre and on different sides ; and the results were such as to lead to the conclusion
that the bending of the fibre did not produce any material effect.

Spider line.

51. A spider line was also used : it was not found possible to suspend this freely
in the tube. It was attached top and bottom to a wire frame, but it was quite loose
between the points of attachment, so that it could swing to either side.

Considerable difficulty was found in observing the spider line, as it was lost sight of
the instant it was the least out of focus; but the general result of the observation was,
that at higher pressures both for air and hydrogen the motion was negative or to the
heater ; but at pressures of less than about 8 inches it was decidedly positive, the fibre
being driven away from the heater as far as its frame would allow.

From the fact that the fibre of silk had shown positive motion so nearly up to the
pressure of the atmosphere it might have been anticipated that the spider line, on
account of its much greater thinness, would have shown positive motion even at
pressures considerably above that of the atmosphere. But the reasoning of Art. 46
respecting the differences of temperature to be maintained and the effect of the air
currents, obviously applies with greater force to the spider line than to the fibre of
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silk, and at once accounts for the observed fact that the positive motion with the
spider line was not obtained until the pressures were somewhat lower than those
necessary for the fibre of silk.

52. Both with the fibre of silk and the spider line the phenomena of impulsion (the
excess of pressure against warm surfaces) were apparent and consistent at densities
many hundred times greater than the highest densities at which like results are
obtained with vanes several hundred times broader than the fibre of silk ; this verifies
the theoretical conclusion on which this part of the investigation was based. The
results in this case are not so definite as is the agreement of the logarithmic homologues
in the instances of transpiration; but the one fact supports the other, and we may
consider the law of impulsion— Law VIII., Art. 9—to have been sufficiently proved.

This concludes the experimental investigation.

PART TL.—(THEORETICAL).
SECTION V.*INTRODUCTION TO THE THREORY.

53. In suggesting in a former paper that the results discovered by Mr. CROOKES
were due to the communication of heat from the surface of the solid bodies to the gas
surrounding them, I pointed out as the fundamental fact on which I based my explana-
tion, that when heat is communicated from a solid surface to a gas, the mean velocity
of the molecules which rebound from the surface must be greater as they rebound than
as they approach, and hence the momentum which these particular molecules com-
municate to the surface must be greater than it would be if the surface were at the
same temperature as the gas. _

So far the reasoning is incontrovertible. But in order to explain the experimental
results, it was necessary to assume that the number of cold molecules which approached
the hot surface would be the same as if the surface were at the same temperature as
the gas, or at any rate if reduced the number would not be sufficiently reduced to
counteract the effect of increased velocity of rebound.

Although at that time I could not see any definite proof of this, nor any way of
definitely examining the question, yet I had a strong impression that the assumption
was legitimate ; and although I hoped at some future time to be able to complete the
theoretical explanation, T was content for the time to rest the evidence of the truth of
the assumptions involved on the adequacy of the reasoning to explain the experimental
results obtained.

As other suggestions respecting the cause of the phenomena, widely different in
character from mine, had found supporters, and a good deal of scepticism was expressed
as to the fitness of the cause which I had suggested, my attention was occupied in
deducing the actions which must result from such a force, and comparing them with
experimental results. Having, however, at length satisfied myself, and seeing that a



PROPERTIES OF MATTER IN THE GASEOUS STATE. 773

conviction was spreading that what I suggested contained the germ of the explanation,
I set to work in earnest to complete the explanation, and ascertain by an extension of
the dynamical theory of gases what effect the hot molecules receding from the surface
should produce on the number and temperature of those approaching. _

My first attempts to accomplish this were altogether unsuccessful. 'When contem-
plating the phenomena it seemed to me that I could perceive a glimmering of the
method of reasoning for which I was in search, but as soon as ever I attempted to
give definite expression to it this glimmering vanished.

The reason for this I now perceive clearly. "When contemplating the phenomena, I
had a surface of limited extent before me, and I considered the effect on such a surface
without recognising the fundamental importance of the limit to size.

On the other hand, when I came to definite reasoning, for the sake of what appeared
to be a simplification of the conditions of the problem, I assumed the surface to be
without limit, thus introducing a fundamental alteration into the conditions of the
problem without perceiving it. , k

The importance of this limit only became apparent to me when I found, by simple
dynamical reasoning, that with surfaces of wunlimited extent such results as those
actually obtained would be impossible. This appeared as follows :—

No force on unlimited surface.

54. If we had two plane plates of unlimited extent, H and C, the surface of H
opposite to C being hotter than the surface of C which was opposite to H, the outside
surfaces of both plates being at the same temperature, then in order to produce
results similar to those obtained with limited plates, the gas between the two plates
must maintain a greater steady pressure on the plate H, than that which it exerts on
the colder plate C. "Whereas it is at once obvious that such a condition is contrary to
the laws of motion, which require that the gas between the two surfaces should exert
an equal and opposite pressure on both surfaces.

‘ Having once perceived the force of this reasoning, it became clear to me that if, as
I had supposed, the results obtained in the experiments were due to gaseous pressure,
then they must depend on the limited extent of the surfaces.

This gave me the clue, in following which I have not only had the satisfaction of
tinding the explanation complete as regards the phenomena from which it originated,
but I have also found that the theory indicated the phenomena of thermal transpira-
tion, and explains much that hitherto has been considered anomalous respecting the
laws of transpiration of gases through small channels—suggesting the experiments by
which might be established the relation between these actions.

The manner in which the force arises in the case of a limited surface was at first
rendered much clearer to me by considering an illustration, which I introduce here,
although it forms no part of the proof which will follow.
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55. Instead of H and C being plates with gas between them, let them be earthen
batteries of unlimited length, and suppose that guns are distributed at uniform intervals
along those batteries; suppose, also, that all the shot fired from H bury themselves
in the earth of C, and wvice versd.

Then, in the first place, it is obvious that since on firing a shot the momentum
imparted to the gun is equal and opposite to the momentum given to the shot, every
shot fired from H will exercise the same force to move the battery H away from C as
the shot will exercise to move C away from H ; and in the same way the recoil of the
guns on C will exercise the same tendency to move C away from H as the shot will
exercise to move H away from C. And this will be the case whether the guns are
supposed to be pointed straight across the interval between the batteries, or, as 1 shall
suppose, are pointed with various degrees of obliquaty.

Since, then, the result of every shot, whether fired from H or C, causes equal and
opposite forces on the two batteries, the result of all the firing, no matter how much
harder one battery may bombard than the other, must be to cause an equal force on each
battery, the batteries being of unliniited length.

This case will be seen to be strictly analogous to the effect of the gas between two
plates of unlimited extent to cause equal pressures on the plates, no matter what may
be the differences in the temperature of the plates.

If now we consider the batteries of limited extent, then, owing to the obliquity of
the guns, some of the shot from H may pass beyond the ends of C, and wvice versd ;
and in this case the force of recoil on the battery which fires will no longer be
balanced by the stopping of the shot on the other battery. So that supposing the
directions of firing to be similar, that battery which fires the hardest will be subject
to the greatest tendency to move back.

The battery which fires the hardest corresponds with the hottest plate; and hence
we perceive by analogy that, if of limited extent, the hottest plate will experience
the greatest pressure from the gas between the plates.

56. The analogy between the batteries and the plates is rendered more strict if we
suppose the batteries H and C to be two limited batteries, each placed in front of a
battery of unlimited extent, and that these unlimited batterics are pounding away in
an exactly similar manner.

The effect of the shot from these unlimited batteries on H and C will be analogous
to the effect of the gas outside and beyond the plates. And it is at once seen that
these unlimited batteries will produce similar effects on H and C respectively, and
that the effect of the firing between H and C will be uninfluenced by the batteries
behind, and therefore, as before, that battery will be %U.bJGCt to the greatest tendency
to move back which fires the hardest.

To make the analogy between the two cases complete, suppose that H and C, in
addition to pounding away at each other, are exactly returning the fire of the batteries
from behind, and that the mean rate at which H fires at C and C at II are exactly
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the same as the rate at which the other firing goes on, but that the velocity of the
shot from H is just as much greater than the mean velocity, as the velocity of the shot
from C is below the mean. Then it is at once seen that the total tendency on H is
to move back, while the total tendency on C is to move forward.

It obviously follows from the foregoing that the inequality in the forces on H and C
could only occur at a certain distance from their ends, which distance would depend
on the distance between the batteries ; and hence that the ratio which this inequality
(due to any particular rate of firing) would bear to the whole reaction on either
battery would increase as the length of the batteries diminished; or in other words,
the inequality of force would be proportional to the distance between the batteries,
and would be constant whatever might be the length of the batteries beyond a
certain point. i

At first sight it may appear that the distance between the batteries H and C should
be analogous to the distance between the hot and cold plates; but it is necessary to
remeraber that it is only in case of the gas being extremely rare, as compared with
the distance between the plates, that the molecules can be supposed to go straight
from the one plate to the other. In ordinary cases the molecules encounter other
molecules, and the effect of such encounters is to reduce the motion to a mean.
Hence it appears that the distance between the batteries as affecting the equality
in the reactions is somewhat analogous to the distance which a molecule may be
supposed to travel without losing its characteristic motion. And hence it would
appear that in the case of gas the inequalities of force on the two plates would be
proportional to the inverse density of the gas and the extent of the boundaries of
plates. '

57. The shot from H which miss C, and those from C which miss H, must be
stopped by the outside batteries. Therefore the inequalities in the forces on H and
C will be balanced by inequalities in the forces on the batteries behind, and the sum
of the forces on H and the battery behind will be equal -to the sum of the forces on C
and the battery behind.

And this is strictly analogous to the result of SHUSTER'S experiment, viz. : that
the effect upon the vanes of the light mill is exactly balanced by the effect on the
containing vessel.

58. The batteries also serve to illustrate the action of thermal transpiration. In
the case already considered (Art. 57) the inequality between the shot from H which
miss C and those from C which miss H is transferred to the outside batteries, or in the
case of the gas, to the containing vessel. The better to illustrate the present point,
suppose that the outside batteries are ranged across the ends of the open space
between H and C. This will make no difference to the result. The inequality of the
action of the shot which miss H and C must now cause a force parallel to the end
batteries, tending to cause these batteries to move end-wise in the direction of C.

Suppose that the two batteries H and C were free to move together in the

~
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direction from C to H (suppose them on a truck). The inequality in the force
would set them in motion in this direction, which motion would increase until the
actual velocity of the shot from C equalled the actual velocity of the shot from H;
then all inequalities in the reactions would cease, and there would be no reactions on
the limiting batteries.

In this case the limiting batteries are obviously analogous to the sides of a tube,
and the interval between the planes H and C corresponds with a layer of gas at equal
pressures, but across which the heat is being conducted by the greater velocity of the
molecules which move from H to C; and the conclusion is that such a layer of gas
when maintained at rest exerts a tangential force on the sides of the tube tending to
move the tube in the direction of the flow of heat, whereas if the gas were free to
move it would flow towards the hottest end; and this is the phenomenon of thermal
transpiration.

59. The foregoing illustration, with the exception that the action is confined to a
plane instead of being distributed through a space, is more than analogous: it is
strictly parallel to the case of gas as long as the gas is so rare that the molecules
proceed straight across the intervals between the plates or sides of a tube. When
this is the case, therefore, the example of the batteries explains the phenomena of
thermal transpiration as well as the phenomena of the radiometer. But when the gas
is so dense that in crossing the interval between the surfaces the molecules undergo
several encounters, the parallelism no longer holds. Even then, however, the analogy
holds, for the gas at any point may be considered as consisting of two sets of
molecules which are moving across a plane from opposite sides. And by examining
the difference in the velocity of these two sets of molecules a general explanation of
many of the phenomena may be obtained without recourse being had to a strict
analytical investigation. The analogy has, however, been pursued far enough to serve
the purpose of an introduction.

Before proceeding to the mathematical investigation, which is novel and somewhat
intricate, I have thought it advisable to further introduce it by a short description of
the method used and the assumptions involved.

Prefatory description of the mathematical method.

60. The characteristic as well as the novelty of this investigation consists in the
method by which not only the mean of the motions of the molecules at the point under
consideration is taken into account, but also the manner in which this mean motion
may vary from point to point in any direction across the point under consideration.
It appears that such a variation gives rise to certain stresses in the gas (tangential
and normal), and it is of these stresses that the phenomena of transpiration and
impulsion afford evidence.

Instead of considering only the condition of the molecules comprised within an
elementary unit of volume of the gas, what is chiefly considered in this investigation
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is the condition of the molecules which cross a plane supposed to be drawn through
the point, which plane may or may not be in motion along its normal.

The molecules which cross this plane are considered as consisting of two groups, one
crossing from the positive to the negative side of the plane, and the other crossing
from the negative to the positive side. Considered in opposite directions, the mean
characteristics (the number, mass, velocity, momentum, energy, &c.) of these two
groups are not necessarily equal : they may differ in consequence of the motion of
the gas, the motion of the plane through the gas, or a varying condition of the
gas. And the determination of the effects of these causes on the mass, momentum, and
energy that may be carried across by either group is the more general result of the
investigation.

61. As a preliminary step, it is shown that whatever may be the nature of the
encounters between the molecules within a small element, the encounters can produce
no change on the mean component velocities of the molecules which in a definite time
pass through the element ; and hence, whatever may be the state towards which the
encounters tend to reduce the gas, this state must be such that the mean component
velocities of the molecules which pass through the element in a unit of time remain
unaltered. These mean component velocities, it is to be noticed, are not the mean
component velocities of the molecules within an element at any instant.

Certain assumptions are then made. These do not involve any law of action
between the molecules. They are equivalent to assuming that the tendency of the
encounters within an element is to reduce the gas to a uniform state.

From these assumptions two theorems (L. and IL) are deduced. From theorem I.
it follows that the rate of approximation to a uniform gas is inversely proportional to
a certain distance s, which distance is inversely proportional to the density and is
‘some unknown function of the mean velocity of the molecules. From theorem II. it
follows that the molecules which enter a small element from any particular direction
arrive as if from the uniform gas to which the actual gas tends at a point distant s in
the direction from which the molecules come. k

When the gas is continuous about the element for distances large compared with
s, then s is independent of the direction from which the molecules come; but near a
solid surface s is a function of this direction and of the position of the element with
respect to the solid surface.

These theorems are fundamental to all the reasoning which follows; and the dis-
tance s enters as a quantity of primary importance into all the results obtained.

It is proposed to call this distance the mean range of the characteristics of the
molecules. Thus we have the mean range of the mags, the mean range of momentum,
and the mean range of energy. By qualifying the term “mean range” by the name of
the quantity carried, instead of considering it as a general characteristic of the condition
of the gas, two things are avoided—

5 ¢ 2
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(1) It is not implied that the mean range is the same for all the quantities which
may be considered ;

(2) There is no fear of confusing the mean range with the mean path of a molecule.

The mean range, whatever may be the nature of the quantity considered, is obviously
a function of the mean path of the molecules, and is a small quantity of the same
order as the mean path, but it also depends on the nature of the impacts between the
molecules. ‘

The symbol s is used to express the mean range of any particular quantity Q.

62. Assuming that the mean value of @ for the molecules in an elementary unit of
volume at a point is a function of the position of the point, the aggregate value of Q
carried across the plane at a point is obtained in a series of ascending powers of s.
And by neglecting the terms which involve the higher powers of s, which terms also
involve differentials of Q of orders and degrees higher than the first, equations are
obtained between s and the aggregate value of Q carried across the plane.

63. The dynamical conditions of steady momentum, steady density, and steady
pressure are next considered. General equations are -obtained for these conditions,
which general equations involve s, the motion of the plane and other quantities
depending on the condition of the gas.

The condition that there may be no tangential stress in the gas is also considered.

It is found that when there is no tangential stress on a solid surface wherever it
may be in the gas, the mean component velocities of all the molecules which pass
through the element in a definite time must be zero at all points in the gas.

64. The equations of motion are then applied to the particular cases which it is the
object of this investigation to explain. Two cases are considered. The first, that of a
gas in which the temperature and pressure only vary along one particular direction, so
that the isothermal surfaces and surfaces of equal pressure are parallel planes ; this
is the case of transpiration. The second case is that in which the isothermal surfaces
and the surfaces of equal pressure are curved surfaces (whether of single or double
curvature); this is the case of impulsion and the radiometer.

As regards the first case, the condition of steady pressure proves to be of no
importance; but from the conditions of steady momentum and steady density an
equation is obtained between the velocity of the gas, the rate at which the tem-
perature varies, and the rate at which the pressure varies; the coefficients being
functions of the absolute temperature of the gas, the diameters of the apertures, and
the ratio of the diameters of the apertures to the mean range. These coefficients are
determined in the limiting conditions of the gas, when the density is small and large,
and as they vary continuously with the condition of the gas, the limiting values afford
indications of what must be the intermediate values.

From this equation, which is the general equation of transpiration, the experimental
results, both as regards thermal transpiration and transpiration under pressure, are

deduced.
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In dealing with the second case, that in which the isothermal surfaces are curved,
the three conditions—steady momentum, density, and pressure—are all of them
important. These conditions reduced to an equation between the motion of the gas,
the variation in the absolute temperature, and the variation in pressure, in which, as in
the equation of transpiration, the coeflicients are functions of the absolute temperature,
the diameters of the apertures, and the ratios of the diameters of the apertures to the
mean range.

The reduction of the conditions of equilibrium to this equation, however, involves
the assumption that the gas should not be extremely rarefied. In order to take this
case into account a particular example is examined, and the equation so obtained,
together with the equation obtained from the conditions of steady motion, is shown to
lead to the results of impulsion and the phenomena of the radiometer.

SecTioN VI.—NortaTioN AND PRELIMINARY EXPRESSIONS.

65. In arranging the notation I have endeavoured as far as possible to make it
similar to the notation already adapted to the kinetic theory of gases by previous
writers. With this object I have adopted almost entirely, both as regards sywbols
and expressions, the notation used by Professor MAXWELL in his paper “On the
Dynamical Theory of Gases.”* But his notation, copious as it is, has fallen far short
of my requirements. I have had to take under consideration certain quantities which
have not hitherto been recognised ; and what has particularly taxed my resources in
symbolising, is that I have had, according to my method, to devise symbols to express
each of twenty-four partial or component quantities which spring from any one of
certain quantities, which have hitherto been dealt with as simple quantities.

Explanation of the symbols.

66. u, v, w, are used to represent the component velocities of a molecule with
reference to the fixed axes x, ¥, 2.

& m, { are used to represent the component velocities of a molecule with reference
to axes parallel to x, y, 2, but which move with the halves of the mean component
velocities of the molecules which pass through an element in a definite time.

U, V, W are used to represent the component velocities of the moving axes.

Throughout this investigation bars over the symbols indicate the mean taken over
some group of molecules ; when no further indication as to the particular group is
given, it is to be understood that the mean is taken from the entire group in a unit of

* Phil, Trans, 1867,
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volume at the same instant. Thus €% %% £ indicate the mean squares of & =, {
respectively for all the molecules in a unit of volume of uniform gas which 1s in the
same mean condition as the gas at the point considered.

Q is used to represent any quantity belonging to a molecule, such as its mass,
momentum, energy, &c.

3(Q) is used to represent the aggregate value of Q for a group of molecules as
existing in a unit of volume; and when no further indication is given it will be
understood that the aggregate is that of the entire group.

o(Q) indicates the aggregate value of Q carried across a unit of plane area in a
unit of time by a group of molecules, which in the absence of further indication will
be understood to be the entire group which crosses the plane.

0.(Q), with the suffix, is used to express the direction of the plane as well as the

aggregate value carried across it.
u+t
o,(Q), with the superimposed symbol, expresses the group over which the sum-

mation extends; u- indicates that the summation is taken over all those molecules
which are moving in the positive direction as regards the axis of x. By varying the
superimposed symbol, the general symbol may be made to express the value of Q carried

by a group of molecules having any particular motion across the plane indicated by
the suffix.

Fig. 10.

67. As indicated by the signs of the component velocities, the molecules in a unit
of volume or the molecules which cross a surface at a point in a unit of time will be
divided into eight groups.

These groups may be indicated by the eight corners of a cube, having its edges
parallel to the axes, circumseribed about the point considered. Thus in fig. 10 the
group which have w+, v+, w4, will approach O from the region indicated by the
corner A, and similarly there will be a corner for each group. The particular groups,
therefore, may be distinguished by the letters at the corners of the cube, fig. 10. And
instead of
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w-+ wW— w+ W= w-t w— w+ wW—
v+ v+ v V4 CRS v—
w— U—- w—

3(Q), Q) 5@ 5@ 2(Q), 2(Q), 5@, 3{Q
we have respectively,

[ b d g9 h

3(Q), 3@, 2(Q) 2@, 2(Q), 3@, Q). 3@

And in order still further to simplify the notation, instead of

a b ¢ d e ; 19 13

O'(Q_)) O'(Q): O'(Q)a U(Q), O'(Q): O-(Q)7 O-(Q)) O'(Q)
we may write respectively the simple letters
A, B, C D, E F, G, H,

68. The method of considering the value of Q carried across a plane by groups
of molecules distinguished by the directions in which they are moving, constitutes the
essential means by which the results of this investigation are arrived at. And as it
does not appear that this method has been resorted to by any previous writer, it
appears necessary for me to describe at some length the preliminary steps.

The rate at which Q is carried across a plane.

69. Since the aggregate value of Q carried across any plane by the entire group of
molecules must be equal to the sum of the values of Q carried across by all the various
groups into which the gas may be divided, we have

o(Q=A+B+CO+D+E+F+GH+H . . . . . . . (1)
AQ=A+B+C+D . . . . . .. @®
CQ=F4+F+CG+H . . . . . . ®
c@Q=A+B+E+F . . . . . ... @
A(Q=C+D+HA+G . . . . . . . . . ... ()
AQD=A+C+E+G . . . . . . ... (8

AQ=B+D+F+H ., . . . . . . . . ... ©®
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Glas wn ungform condition,

70. When the gas is uniform, whether at rest or in motion, the value of o(Q) has
already been determined by Professor MAXWELL, but it is necessary to transform the
expressions to the notation of this paper.

We have by a well-known formula*®

A=3(iQ), |
A,=3(0Q), % N )
A=3wQ), )

in which the suffixes , g, 2, indicate that it is the planes vz, zz, xy, that Q is being
carried across, and the superimposed symbols @ ¢ ¢ indicate the group of molecules
over which the summation extends.

We have also

z-zwcz),”;
B,=3(vQ), f N )
Bz__z(w ),Jl

and similar expressions for the values of Q carried across each of the other planes by
all the other groups.

In the equation (8) and similar equations we may obviously substitute for u, v, w
their values

u=E&+TU
v=n+V (10)
w={+W

And since the gas is here supposed to be uniform, we shall have

U=u _
V=v e 09 )
W=w

& 7, { being identically the same as if the gas were at rest.

71. For the purpose of this investigation it is necessary to express such quantities as
u+

o-z(Q); a:(—Q) in terms of the groups distinguished by the signs of & 7, {, instead of

* “On the Dynamical Theory of Gases,” Maxwrrt ; Phil. Trans. 1867, p. 69.
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u, v, w; and owing to the fact that in all the cases to be considered U? V2, W? are

of the second order of small quantities compared with «2 ¢% w?® this may be done.
For we may put

o Q=3(F Q=3O +2(EX0)Q . . . . (12)
e Q=3{(EF QU =3(( e+ —s(EFT)Q) . . . . (1)

and when U is small compared with /32, the last term on the right in each of these
equations will be small to the second order as compared with the first term. For the
number of molecules over which the summation in these terms extends is to the whole
number of molecules in a unit of volume in something less than the ratio of U to /2,
Hence, as will subsequently appear, in neglecting these last terms we shall be neglect-
ing nothing within the limits of our approximation. We have therefore

ut £+
"f;(_Q)zz{(fJ;U)Q} R ¢ 1)
o(Q)=2{({+U)Q}

and similarly for all other groups. Thus it appears that the letters a, b, ¢, &c., may
be used indifferently to indicate the groups as distinguished by the signs of u, v, w
orof & n, &

Distribution of velocities amongst the molecules.

72. Although not actually essential to this-investigation, as it will tend greatly to
simplify the results obtained, I shall adopt the conclusion arrived at by Professor
MaxwErLL* with respect to the distribution of velocities amongst the molecules of a
uniform gas, viz.:

£247? +§2

IN=—e = dglydl. . . . . . . . . (15)

where N is the whole number of molecules in a unit of volume, and dN the number
whose component velocities lie between £ and £€4-d¢€,  and n-dy, and  and {+d{,
From equation (15) we have for a uniform gas

E’:—w=\—7—;v. I ¢ X))

* Phil, Trans., 1867, p. 65.
MDCCCLXXIX., 5 H
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?:é:?.. . oan

o 4 _a_ g '
Etbp+il=—ro® . . . . (19
EtEr=nlbnl=lE+TE=2 . . . . . . . . (1)

Also if 7 is the absolute temperature of the gas, p the intensity of pressure, M the
mass of a molecule, and p the density of the gas, we have for uniform gas

]:-i= K2a2 N . ) . . . . . . ‘ N (20)
o?

p_27

SR (22)

in which «? varies with the nature of the gas, and is otherwise constant.

73. The adoption of equations (15) to (22) restricts the application of the results
that may be arrived at to gases of uniform molecular texture such as air and hydrogen.
For these equations do not apply to a varying mixture of gases. In order to render
them applicable to such a mixture it would be necessary to consider throughout the
investigation the presence of at least two systems of molecules. This would add
greatly to the complication, whereas none of the experimental results which it is
my immediate object to explain involve a varying mixture.

It will be seen, however, that at least one important result which has not hitherto
been explained could be fully explained in this way. This is the transpiration of a
varying mixture of two gases through a porous plate. The possibility of such an
explanation will be seen from the results obtained for a simple gas.

74. Table XX. contains all the value of o(Q) carried across the axial planes by the

several groups of molecules in a uniform gas for all the quantities Q which are
jmportant in this investigation.
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SecrioN VIL—THE MEAN RANGE.

75. So far the gas has been supposed to be in uniform condition as regards space as
well as time. When the condition varies from point to point, the results given in Table
XX. will not hold good, for the condition of the molecules arriving from any particular
direction which cross a plane at a point A will not be determined by the mean con-
dition of the gas at A, but rather by the mean condition at the points at which the
molecules receive the direction and velocity with which they cross the plane.

These points will not necessarily be the points at which the molecules last undergo
encounter before crossing the plane, for one encounter may not be sufficient completely
to modify their motion. In order, therefore, to determine from first principles the
manner in which the molecules approach the point A, we must know the law of action
between the molecules, and even then the complete solution would present difficulties
which appear to be insuperable.

Fortunately, however, for the purposes of the present investigation a complete
solution is not necessary. The point that has mainly to be considered is the effect of a
solid surface on the mean condition of the molecules which cross a plane in its im-
mediate neighbourhood. And the principal question is not how far such an effect
would extend into gas in a particular condition, but what would be the nature of the
effect at points to which it does extend, and what would be the comparative range
of similar effects in gases the condition of which differ with respect to density and
variation of temperature ? If it should be found that the number and mean condition
of the molecules which arrive at A from a given direction partake in a definite manner
of the condition of the gas at a point in that direction whose distance s from A is a
definite function of the density of the gas and some function of the temperature ;
such a solution would be sufficient to allow of the deduction of results corresponding
to the experimental results.

Now it appears to follow from the view propounded at the commencement of this
article, that in the interior of the gas there must be some distance s from a point A at
which the mean condition of the gas must represent the mean condition of the mole-
cules which reach A from that direction. This language is somewhat vague, but so
must be the first idea. On closer inspection the question naturally arises as to what
is meant by the mean condition of the gas, and by the mean condition of the molecules
which reach A ? Nor does this question at first sight appear to be difficult to answer.
The mean condition of the gas appears most naturally to resolve itself into that

which we can measure—the density p, the mean pressure g (u++v*+w?) and the

mean component velocities w, v, w; and with respect to the mean condition of the
arriving molecules why should not this be measured by their density, their mean
energy and their mean component velocities? On comparing these with the cor-
responding quantities for the gas just mentioned, one point of doubt presents itself:
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in the mean component velocities of the molecules arriving from one direction
we have a very different thing from the mean component velocities of the gas. How-
ever, ignoring this caution, the most obvious supposition appears to be that as an
approximation towards the condition of the molecules as they arrive at A, we may
suppose them to come from a uniform gas having the density, mean pressure and com-
ponent velocities of the gas at a point distant s from A in the direction from which
they arrive. Such an assumption can be worked out, and the results compared with
known experimental results. But we need go no farther than the case of gas at equal
pressure and varying temperature. As applied to this case, our supposition leads to
the inevitable conclusion that, unless s is zero, such a gas must be in motion from the
colder to the hoter part with a velocity greater than its actual velocity, whatever this
may be, which isabsurd. This brings us back to the caution already mentioned respect-
ing the difference between the component velocities of the group of molecules approach-
ing A, and the component velocities of the gas. Without attempting to investigate
this difference from first principles, we may follow the obvious course of attributing
certain arbitrary mean component velocities to the uniform gas as from which the mole-
cules are supposed to arrive at A.

We now suppose the molecules to arrive at A as from a uniform gas having the
mean pressure and density at a distance s as before, but having arbitrary component
velocities U, V, W (where U, V, W are so small that their squares may be neglected).
This gets over the difficulty in the case mentioned above, for U, V, W being arbitrary
can be so determined that the gas resulting from all the groups arriving at A shall
have any mean velocity, and hence the mean velocity of the gas. It is only one such
case, however, that we can meet in this way; for having once determined U, V, W,
they are no longer arbitrary, and hence if the calculated results fit, to the same degree
of approximation, all other cases, it must be that the approximation is a true one.

This test, however, can only be partially applied. As worked out in the subsequent
sections of this paper, it was found that the supposition explained the phenomena of
the radiometer and suggested the laws of transpiration and thermal transpiration
exactly as they were afterwards realised. And in so far as they can be compared
there is a complete agreement between the theoretical and experimental results.

Under these circumstances, the course which I first adopted in drawing up this
paper was to found the theoretical investigation on such an assumption as has just
been discussed.

The only other course was to look to first principles for the evidence wanting to
establish the truth of the assumption. This I had attempted.

Obviously the first step in this direction was to examine the values of U, V, W as
determined by the case of gas at varying temperature and uniform pressure. This
showed that if a plane be supposed to be moving through the gas with velocities U, V, W,
then, measured with respect to the moving plane, the aggregate momenta carried from
opposite sides across the plane are equal.
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This fact appeared pointed, but the exact point of it was not at once obvious, nor
did it fully occur to me until I had completed the investigation founded as already
described on the assumption.

Subsequently, however, working at the subject from the other end, so to speak, I
came to see that whatever might be the action between the molecules, the probable
effect of encounters in a varying gas would not tend to reduce the molecules after en-
counter to the same state as those of a untform gas moving with the mean component
velocities of the varying gas, but to a wuniform gas moving with the halves of the
mean component velocities of all the molecules which cross a wnit of surface in a unit
of time—which pass through an element vn a unit of time.

I had not till then apprehended, nor do I know that it has anywhere been pointed
out, that the mean component velocities of the molecules which pass through an
element in a given time are not in the case of a varying gas, as they would be in that of
a uniform gas (neglecting the squares of the mean component velocities), the doubles
of the component velocities of the gas. But it turns out to be so (see Art. 77). And
what is more, these mean component velocities are the very velocities U, V, W, which
had been found to be necessary as already described.

The recognition of this fact therefore removed all fundamental difficulty as regarded
the velocities U, V, W.

There still, however, remained the question as to whether the molecules might be
considered to arrive in all respects to the same degree of approximation as from the
same uniform gas—whether the molecules would arrive in respect to density from the
same uniform gas as in respect to mean velocity, &c. ; or whether severally in respect of
density, mean velocity, &c., the uniform gas would correspond to different values of s?
The answer to this question depends on the law of action between the molecules, and
hence it is of necessity left for such light as accrues from the experiments and other
known properties of gas.

It is, however, now proved (not altogether from first principles, but on certain
elementary assumptions which might, it is thought, be deduced from first principles)
that as regards number the molecules will arrive at A as from a uniform gas having
the density, mean pressure and U, V, W, of the actual gas at a certain distance s
from A, and that as regards mean velocity, mean square of velocity, and mean cube
of velocity, the molecules will arrive as from uniform gas corresponding in each respect
with the same or another point. |

So that instead of having one value of s there are four; the numerical relations
between which have not been determined from the elementary assumptions, but which
are all shown to be functions of the temperature and inversely proportional to the
density, and when the gas varies continuously independent of the direction from
which the molecules arrive.

On comparing the theoretical results with those of experiment it is found—

1. That the values of s for density and mean square of velocity are equal ;
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2. That s for the mean cube does not enter into any of the experimental results of
this investigation ;

3. That s for the mean velocity has a real value, but there are no data for effecting
a numerical comparison between this and the other value of s.

As this foundation of the theory on elementary assumptions renders it more satis-
factory, it is introduced at length into this section of the paper. The argument, which
is long and occupies Arts. (79 to 84), may be sketched as follows :—

Sketch of the method by which the fundamental theorems are deduced.

76. Upon certain elementary assumptions, which do not involve any particular law of
action between the molecules, it is first shown that, in respect of density, mean velocity,
&c., considered separately, any group of molecules whose directions of approach differ
by less than a given small angle from any given direction BA, will enter the element
at A (within a sufficient degree of approximation) as if the gas were uniform and had the
same density and mean pressure as at B, and had mean component velocities which,
although not the mean component velocitiés at B, are equal to one half the mean
component velocities of all the molecules which enter an indefinitely small element at
B in a unit of time. These component velocities, which are written U, V, W, cannot
in the first instance be expressed in terms of known quantities, but they are shown to
be functions of the position of B in the gas.

The distance AB or s is shown to be a function of the pressure and density of the
gas, which function, although not completely expressed, as such an expression would
involve the law of action between the molecules, is shown to be approximately inde-
pendent of the variation of the density and pressure, and hence of the direction of AB.

The relations between p, &, U, V, W for a uniform gas may thus be used to express
severully the density, mean velocity, &c., for each elementary group of molecules
arriving at A.  And since p, &, U, V, W are functions of the position of the point B (if
x y z are the coordinates of A, and I m n are the direction cosines of AB) they are
functions of w-+Is, y+ms, z+mns, s having the value for the particular quantity to be
represented. Therefore p, &, U, V, W for B may, by expansion, be represented by p, o,
U, V, W for A, and their differential coeflicients multiplied by powers of s. Thus the
density, mean velocity, &c., of the molecules of each group arriving at A may severally
be expressed in terms of p, o, U, V, W at A, and their differential coefficients
multiplied by a particular value of s.

Therefore as the elementary portions of o(Q) for the group can always be expressed
in terms of the density, mean velocity, &c., and 7, m, n, it can be expressed in terms
of p,a, U, V, W, for A, their differential coefficients multiplied by certain values of s
and [, m, n. And, since all these quantities but /, m, n are independent of the
direction of the group, by integrating for all values of I, m, n, o(Q) is found in terms
of p, &, U, V, W, for A, and their differential coefficients multiplied by s.
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It also appears that within the limits of the necessary approximation, terms
multiplied by U2, V%, W2, or differentials of the second order, may be neglected ; so
that o(Q) is expressed in terms of p, @, U, V, W, and their differential coefficients of
the first order multiplied by some one or other of the several values of s.

U, V, W, are then at once found by putting Q=M, so that ¢.(M), o,(M), and
o.(M), are respectively , v, and w, which form the left sides of three equations (48)
in which U, V, and W respectively appear on the right side.

Tt is difficult to give an intelligible sketch of so complicated a series of operations,
but what has been stated above may serve to indicate the general scheme of this
section.

Mean component velocities of the molecules which pass through an element.

77. Tt has been already pointed out that when the condition of the gas varies, the
mean component, velocities of all the molecules which in a unit of time pass through an
element are not, to the same degree of approximation as they would be if the gas were
uniform, the doubles of the mean component velocities of the molecules in the element at
the same instant. :

To express this, suppose that the condition of the gas varies only in the direction of
@, so that the mean momentum in any direction perpendicular to x carried across all
surfaces is zero. v

Then taking a rectangular element, so-that its edges are parallel to the axes, and its
edges parallel to x are indefinitely short compared with its edges perpendicular to ,
the only momentum carried throngh the element will be by molecules entering and
leaving the faces perpendicular to ; and since the condition of the element remains
unchanged the aggregate momentum of the molecules which enter must be equal to

the aggregate momentum of the molecules which leave.
+

The aggregate momentum which enters at the face on the left is a-j(Mu), or as it

2w+ .
may be written (Muw?), while the aggregate momentum which enters on the right is
—o-Z.(Mu) or —Ezﬂug).

Therefore the whole momentum in the direction of x carried through the element in
a unit of time is

(M) — (M) or S(Mu2)—3(Mu?)
And since the aggregate mass of the molecules which pass through the element in
the same time is

oo M) — o (M) or 3 (Mu)—S (M)
the mean component velocity of all the molecules which pass through the element in
a unit of time is

w

Gza\l%) —o-Z(-iVIu) or Ezﬁzﬂ) — Eé’i\—lzﬂ)
(M) —aM)  S(Mu)—S (M)
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which will not be, neglecting 52, the same as 2u, as it would be if the gas were uniform
and moving with the velocity w.

The same thing may be shown for faces parallel to x, and for variations in the direc-
tions y and 2.

In all the phenomena considered, the velocity

o-:(JiV[u)—a-Z(Mu) -
~7+——-u—_—~—u
(M) — (M)
is very small compared with the mean velocity of a molecule; but the relation is of
the same order as that of the unhindered rate of thermal transpiration and the mean
velocity of a molecule.

78. The following limitations and definitions will tend to the simplification of
subsequent expressions.

The condution of the gas.

All the assumptions and theorems, as indeed the entire investigation, with the
exception of Arts. 1084 and 109, relate to a simple gas in which the diameters of the
molecules may be neglected in comparison with the mean distance which separates them,
the condition of which gas is at all points steady as regards time, and the molecules of
which are subjected to no external forces, such as gravity and electric attractions; and
the term gas is to be understood in this sense unless otherwise defined.

The small quantitves neglected.

As a first approximation, s.e., in theorems (I.) and (II.) no account is taken of varia-
tions of the second order, such as are expressed by
Pp Pa
da?’ da®.

the effects of such variations being too small to make any difference in the results of
the first approximation.
Also throughout the investigation the velocity of the gas is assumed to be so small
9 w4 w— ’
- ~ (M) — o (M
that such quantities as » and (w

4 U

?
J ) may be neglected.
(M) —a,(M)

Definitions.

An elementary group of molecules.—In addition to the separation of the molecules
into the groups A, B, C, D, E, F, G, H, as explained in Art. 67, a further subdivision
is necessary in order to render the reasoning of this section definite.

From any one of the eight groups are selected all the molecules having directions of

MDCCCLXXIX. 91
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motion which differ by less than certain small angles from a given direction, or, in other
words, those molecules of which the directions of motion are parallel to some line
which may be included within a pyramidal surface having indefinitely small angles at
the apex. Such a group will be called an elementary group, and in this sense only
will the term elementary group be used. The mean ray or axis of the pyramid is the
mean direction of the group. And it is to be noticed that only those molecules that
are moving in the same direction parallel to the axis of the pyramid are included in
the same group, those with opposite motion constituting another elementary group.

The distinguishing features of an elementary group, apart from the direction of the
group, are the number of molecules at any instant in a unit of volume-—the symbol ¥
will be used to signify this number ; their mean velocity, mean square of velocity, &c.,
will be indicated without regard to direction by the symbols v, v?; and to avoid
confusion, instead of using Q to indicate the two latter quantities the letter G will be
used to represent severally N, v, Ve, &e,

The resultant uniform gas.—It has been already pointed out (Art. 75) that if the
encounters within an element of volume resulted in the molecules leaving the element
in the same manner as they would leave if' the gas about and within the element were
uniform, this uniform gas must have component velocities which are one-half the mean
component velocities of all the molecules of the varying gas which in a unit of time
pass through the element. This uniform gas, which would also have approximately the
mean pressure and density of the actual gas in the element, is called the resultant
untgform gas of the gas within the element. U, V, W are used to designate its com-

2
o, e . . o .
ponent VelOCltIGS P to express its del’lSIt s and P to express 1ts pressure. U V s W are
1 2 » 2 2 2

functions of u, v, w and of the variations of p, e, or, in other words, they are functions
of the condition of the gas at the point considered, but they cannot be completely deter-
mined in the first stage of the investigation.

The inequalities in elementary groups.— All the elementary groups relating to a unit
of volume in a varying gas are compared with corresponding elementary groups in the
resultant uniform gas for the element, and the differences in respect of the density and
velocities of the molecules are spoken of as the inequalities of the group. There are
only four quantities in respect to which the groups can be compared, namely : the
numbers of molecules, the mean welocity, the mean square, and the mean cube of the
velocity; essentially, therefore, the differences in these constitute the inequalities of the
gorup.

Thus, if G standing for ¥, v, v? or v refers to an elementary group of the resultant
uniform gas for an indefinitely small element, and G41 refers to the corresponding ele-
meutary group of the varying gas, then I represents the inequality in an elementary
group at a point as compared with the resultant uniform gas at that point.

When the element has small but definite dimensions (8r) the inequalities of the
elementary groups entering or leaving will be
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@ Q dl &r

dr 2 dr 2°

for the inequality has reference to the uniform gas at a point distant %7 from the point

at which I represents the inequalities, and therefore the change in G+1I must be added
to or subtracted from the inequality, as the case may be.

79. The following assumptions may all be deduced from first principles, but the
necessary reasoning is long, and it is thought that the assumptions are sufficiently
obvious.

Assumptions.

I. That the condition of the gas, as already defined (Art. 78), at any instant within
an element of volume depends entirely on the numbers and component velocities of the
molecules which, in a unit of tume, enter at each part of the surfuce of the element ;
and hence 1f the molecules enter one element in exactly the same manner as the molecules
enter a geometrically similar element, the condition of the gas within the elements must
be stmalar, ,

IL. That the number and component wvelocities of the molecules which leave each
elementary portion of the surface of an element, depend only on the condition of the
gas within the element and the manner in which the molecules enter; and therefore by
(I.) depend only on the manner in which molecules enter. Also since the gas imme-
diately outside the element consists of the molecules entering and leaving, its condition
depends only on the molecules entering. So that if molecules enter corresponding
portions of the surfaces of two geometrically similar elements in exactly the same
manner the gas about the elements must be exactly similar.

III. That whatever be the nature of the action between the molecules, the effect of
encounters within an element must always tend to produce or maintain the same relative
motion amongst the molecules, which relative motion s that of a wniform gas; and
hence the encounters must render the manner in which the molecules leave the
element, as compared with that in which they enter, more nearly similar to the
manner of a uniform gas.

That is to say, if A, B, C, D, &c., be a series of geometrically similar spherical
elements, and the gas about B is such that the molecules enter B in exactly the same
manner as they leave the opposite sides of A, and the gas about C such that the
molecules enter as they leave the opposite side of B and so on, the gas about each
element being such that the molecules enter the element exactly as they leave the
opposite side of the preceding element, then according to the assumption the gas about
each element will be more nearly uniform than that about the preceding element, so that
eventually about the n™ element the gas would be uniform, n being indefinitely great.

This may be expressed algebraically. Putting 7 for the number of encounters

Hh 12
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necessary to obliterate the inequalities in the groups which pass through A in a unit
of time, A will be infinite, and as I is so small that it may be considered as taking
no part in the distribution, the rate of distribution will depend on the number of

. . . 2a .
encounters in a unit of volume, and on some function f{a) of «, N being the mean

velocity of the molecules.
Therefore approximately

dl
c?ﬁ:—f(a)I Coe e e e (29)
So that if 1" is the initial value of I, then after & encounters we have integrating
I =I/@_ﬂa)/l:
and if % is infinite
I=0 . . . . . . . . . .. (29

JS(e) is a positive function of «, and is not a function of I; but both as regards
form and coefficients f(«) may depend on the nature of the quantity G.

The question whether f(«) is different for any or all of the quantities N, v, v, &ec.,
must depend on the nature of the action between the molecules during encounters.

If therefore by comparing the mathematical results with those from experiments
the several values of f(«) can be compared, a certain amount of light would be thrown
on the action between the molecules. So far, however, the conditions of equilibrium
in the interior of gas of which the temperature varies form the only instance in which
the values of f(«) are brought into direct comparison. This instance affords means of
comparing the values of f(«) for ¥ and v and shows that these values must be equal.
As regards f(«) for v or v3, there are no experimental results which furnish any
further light than that f(«) has real positive values.

These questions do not rise in this investigation, since f(e) for v3 does not appear in
the results, and should f(«) have a different value for v from that which it has for
~ and v%, the only result would be a numerical difference in certain coefficients as to
the comparative value of which the experiment affords no approximate evidence.

IV. That when the molecules which enter or leave an element of volume in o unit of
time are constdered separately, the proportion of the molecules (N V) entering in a unit
of time tn each entering group which will subsequently undergo encounters within the
element, and the proportion of the molecules leaving vn a unit of time, in each leaving
group, which have undergone encounters within the element, are approximately pro-
portional to the mean distance (8r) through the element in direction of the group and to
the number of molecules in each unit of volume of the element.

V. That the mean effect of encounters in distributing the several inequalities of the
molecules which, entering in a umit of time, encounter within the element is a function
(f(@)) of the mean velocity of the molecules within the element at the instant.
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Fundamental Theorems.

80. On the assumptions I. to V., remembering the fact pointed out in Arts. 75
and 79 with respect to the component velocities of the resultant uniform gas, the
following theorems are established :—

Theorem (I.).—Each of the several inequalities, as defined in Art. 78, in every ele-
mentary group of molecules which vn a unit of tvme leave an element of wvolume of
small but definite size will severally be less than in the corresponding elementary
group, which in the sume time enter the element in the same direction by quantities
which bear approximately the same relation to the mean tnequalities of the two
groups, as the distance through the element in direction of the group bears to o
distance (s) which vs a function of the density of the gas, and the mean square of the
velocity of the molecules only. '

To express this theorem algebraically, let G and I, as explained in the last article,
refer to the point in the middle of the element. Then the inequality in the entering
group is expressed by

dG ér al &r
T dr _2—+I—d9~ 2

and for the leaving group by
dG or al ér

a2 TIg 5
And what the theorem asserts is

! o
HGHT)Sr="T C e (25)

wherein s is a function of p and «* only.

Proof of Theorem (I.).

(@) From assumptions I. and IL, Art. 79, it follows at once that when the con-
dition of the gas varies from point to point, the molecules cannot enter an element of
volume in the same manner as they would from any uniform gas.

(6) From («) and assumption III. it follows that the effect of encounters within an
element in a varying gas is to render the manner in which the molecules leave as com-
pared with that in which they enter more nearly similar to that of some uniform gas.

(¢) The uniform gas referred to in (b) must, as has been already pointed out, have
component velocities equal to half the mean component velocities of all the molecules
which in a unit of time pass through the element.

This at once follows from the illustration appended to assumption IIL., Art. 79.
For the molecules which leave an element in a unit of time must have the same mean
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component velocities as those which enter, their aggregate mass being the same and
the momentum within the element remaining unaltered, and as the molecules enter
each successive element in the same manner as they left the preceding, the molecules
which enter the n'" element in a unit of time must have the same mean component
velocities as those which enter the first ; but in the n® element the gas is uniform.
Therefore, if U, V, W are the component velocities of the uniform gas, when these are
small so that we may neglect U?, V2, W?
(M) — o, (M) = o—f,(w;) o, (M) W=y  0:(Mw) — (M)

U 2 U+ U— w+ w— ‘ ‘ * (2 6)
oM — (M) o) (M) — o, (M) oM —a,M

The number of molecules which enter the #" element will also be equal to the
number which enter the 1%,

pe=pa’ . . . . . . . (2D

And the energy carried into the »' is equal to the energy carried into the first
element. Therefore
8— /p/3
pet=pe® . . . . . . . . . . . (28)

From which equations
e’=ao*and p=p’. . . . . . . . . . (29)

Or the density and pressure of the uniform gas is approximately the same as the
density and mean pressure of the actual gas. This uniform gas is, therefore, the
resultant uniform gas according to the definition Art. 78.

(d) From assumptions IV. and V. it follows directly that the several changes in
the inequalities considered separately of each elementary group which enters the
element in a unit of time will be proportional to the mean inequalities of the group

as it enters and leaves multiplied by f(«) and by the product of — and the mean

distance through the element traversed by the group.
Or, as before, putting I for the mean inequality of the group as it enters and leaves
in respect of G, the separate inequalities are

—-—(G—l—I) 2—|—I and (G—l—I) —|—

Whence from assumptions IV. and V. it follows that

L@Ds =AWl . . (30)
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And from the dimensions of this equation it follows that o represents a distance.
Therefore putting s for this distance '

a or

SOHDE="T . . . (@1)

[Q. E. D.]
Corollary to Theorem (I.).

aG . PG . AG
When 7. 18 nearly constant, so that we may neglect s a8 compared with 4 then

integrating equation (31) we have

A6 |
I=s don—l—C‘e

or B )]
dG_1_0;
dr—s_se J

Near a solid surface.

Equation (32) shows the nature of the inequalities as affected by discontinuity such
as may arise at a solid surface. The last term on the right gives the effect of discon-
tinuity for an element at a distance » from the surface, » being measured in the
direction of the group. This effect diminishes as 7 increases.

. . ac aG T .
In the first of equations (32) we may obviously put s, ~d—? for s -+Ce’, s, being a

function of the position of the element and of the direction of the group.

Theorem (IL.).— When the variation in the condution of the gas is approximately constant,
then in respect of any one of the quantities N, v, V%, dc., each elementary group of
molecules entering a small element of volume at any point will enter approximately
as if from the resultant wniform gas at a point in the direction from which the
group arrives, the distance of which point from the element is a function of the
mean velocity of « molecule and inversely proportional to the number of molecules
within o unit of volume, and is independent of the variation of the gas and the
durection of the elementary group.

To illustrate this, supposing a small spherical element at A, and considering the
group arriving in the direction BA, then if the gas varies in the direction BA the

Fig. 11

resultant uniform gas for points along BA will differ, and if A were to be surrounded
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by a gas identical with the resultant uniform gas at a point P, the elementary group
in the direction BA or PA would arrive at the element with different values as to
density, mean velocity, &c., from a similar group if the gas were identical with the
resultant uniform gas at another point in AB.

Now what the theorom asserts is, that there is some point P, at which the resultant
uniform gas is such that the elementary group in direction BA would arrive with
approximately the same value of N as the actual group, and that the distance P A is
independent of the direction of BA, i.e., would be the same for all directions from A.
In the same way there is some point P, at which the resultant uniform gas is such
that the group of molecules B A would have the same value of v as for the actual gro11p,
and so for v? and v®,

It is not however asserted that AP, AP,, &c., cither are or are not identical.

Proof of Theorem (I1.).

This follows directly from theorem (I.).

Taking a series of elements bounded by a cylindrical surface described about the
element at A and having its axis in the direction of the group, then all the molecules
of the group leaving one element may be supposed to enter the next.

In entering the first element at B there will be a difference I between the value of
G for the actual group and the value of G for the resultant uniform gas. If Gy is
taken for the resultant uniform gas Gy-1I; will represent the corresponding value for
the actual gas at B.

On emerging from the first element G4-1 for the group will, by theorem (I.),

have been diminished by (—SSZI, or being the thickness of the element, on emerging

from the next element, G+1 will be still further diminished hy ifI, and so on
through all the elements, the total diminution of G-I being equal to—

r Iola".

0S

And by the corollary to theorem (1), since the variation in the condition of the gas
is approximately constant, I is approximately constant through the distance s, and
s will be approximately constant through this distance ; therefore

(lar=1, . ... (9

3
Hence, having traversed the distance s, the group will emerge having

GHI=Gp+1—1;
=GB(34)
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That is, on arriving at A, the molecules will, in respect of G, enter the element as
if from the resultant uniform gas at B, a point in the direction of the group, the distance

s of which from A is a function of e, is inversely proportional to ﬁ and is independent

of the variation of the gas and of the direction of the group. [Q E. D.]

Corollary to Theorem (II.).—The effect of a solid surface.

If in the neighbourhood of A there is a solid surface such that, if B is a point on
this surface, BA is of the same order of magmtude as s, then puttmg r=DBA for the
group arriving at A from the direction BA, equation (33) gives

T
GA+IA=GB+IB—fO;dr. L (35)
and substituting for i— from equation (32) and integrating

dG -
Gt L= Gy b Ly—r5 " — C(e* +1),

adG
or since GB—-GA+1 and Ii— C=s-é;, therefore

dG

IA_ST-—Ce.‘.........(36)

C will be a function of 7, m, n, and it may be written f1 (lmn)s%j; therefore

=%{1—f(lmn)é?} e 10

The mean range.

81. The distance s, or ~——— 9 (equation 30) is thus shown to be the distance at which

f(

the elementary groups radiating outwards from a point have the mean value of G for
the molecules which, in a unit of time, pass the central point. And hence it is
proposed to call s the mean range of the quantity G.

The mean range is thus seen to be approximately independent of the space variations
of the gas, but since s involves f(«), which, as pointed out in assumption III., Art. 78,
may, so far as is yet known, have different values for v and v® from its values for N

and v? which latter are equal, so the values of s for the mean velocity and mean cube
MDCCCLXXIX, 5 K
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of the velocity may be different from the values of s for the density and mean square
of the velocity, which latter are equal.

Such a difference in the values of s, however, is not important as regards the
immediate results of this investigation, and in the absence of any evidence to the con-
trary all values of s will be treated as equal.

The mean component values of s and general expression of o(Q).—Gas continuous.

82. When the gas is continuous, by theorem (II.) all values of o(Q) for the groups
A, B, C, &c., at any point may severally be expressed as functions of p, «, U, V, W for
this point, their space variations, and s.

The first step is to express as a function of p, «, U, V, W, the elementary portion of
o(Q) belonging to an elementary group of molecules, and then to integrate for the
larger groups.

Putting ¢’(Q) for the value of o(Q), which would result from the resultant uniform
gas at a point, and 80(Q) for the elementary portion of o(Q) belonging to an
elementary group whose directions are /, m, n, then since p, &, U, V, W, for any
point @, y, z, are functions of x, v, z, 80(Q) 1s a function of x, ¥, z, and for the point
x+1s, y+ms, z4ns we have

S Q=80 (Q+o(Lp bt 408 8@ . (39)

together with terms which are neglected as small.
Whence integrating for all the groups in A, and putting A. for ¢'(Q)

W(Q)=A+S[j<l +m +n >8Asm gdéde . . . . . (39)

where cos §=1, m= sin f cos ¢, n=sin fsin ¢, and similarly for the other seven
groups, B, C, &c.
The values of A, &c., are given in Table XX.

The integrals of s{(l&i —i--md%/ +n§z>SA} sin 0dfdé will involve terms which will

be the differentials of the corresponding terms in Table XX., multiplied by s and by
certain numerical coefficients Which are the mean values of [, of /* divided by 7, and

so on, and which may be written 1, Z" 7 " &ec. The values of s multiplied by these co-
efficients are the mean component values of s for p, a, &% &e., for the groups A, B, C, &e.
As it is these component values which come into comparison with the distances from a

solid surface, it is important to preserve the coeflicients, therefore instead of using the
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numerical values they will be indicated by the letters L, L,, &ec., as about to be
assigned.

Putting ¢ for unity or any power of @ or U, V, W, the coefficients by which the
differentials of the corresponding terms in Table XX. must be multiplied, are as
follows :—

-— = ~
Cﬁg &e. by I=} expressed by L,
dpki dpyi dp&i P_o
dx? 73/-’ = 2 7 —3 29 L:Z’
—— g
dpki dpfi go n_ % . L,,
dy > dz [ 3w
S s (40)
dp&* dpn*t dpl* P_g 1,
de’ dy’ dz 7 p % ? 4’
dp& dpE% o Pm_o
dy ’ olz H &C' 22 P -8 29 L5,
dpEni dpti Pn_
R R L

The coefficients I1;, L, &c., all occur in some one or other of the expressions for
A, B, C, &c.; but when these expressions come to be added together it is found that
L, is the only coefficient of s which has to be considered. This being the case, instead
of Lys, the simple s will be used, so that in all subsequent expressions

s=§(meanrange), Co e e (4

The signs of the products of s and the differentials of the several terms in the table
may, as will be seen from Art. 69, be expressed in the following manner, ignoring the
numerical coeflicients L, Ly, &c.

o (Q)=A.+B,4+C.+D,+E,+F.+G,+H,

2

—5% (A;—B. A0, =D+ E,—F,+ G,— ),

J

with similar expressions for ¢,(Q) and o.(Q), the suffix to the letters being the same
as the suffix to o(Q) on the left.
The foliowing are the resulting values of o(Q) which are required for this investiga-
tion, terms of the order U? having been neglected.
5K 2
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N
3
X

&

~

v+ 2
_ . pU s dpaU s dps® s dpaV
oM =+ = T de T om s

v ___pocU s dpalU idpag_ s dpaV
o)== = /m dy Tor @ "Tm s )
__pa? 25 dpaU B
M) ==
s dpaV s dpaU
M) == v a0 [
8 dpaW s dpalU
oMu)=— = v &

with corresponding equation for Q=Mv, Q= Mo,

e M o)} =gpu0 — 5

and similar equations.

The values of U, V, W.

(43)

(44)

(46)

(47)

Hitherto U, V, W have been treated merely as functions of @, 9, . They are, how-

ever, completely expressed by equation (43).

For remembering that o,(M), o,(M), (M) are respectively equivalent to pu, pv, pw,

we have
U=u \7%;%’5:
s 4
\V:’I,U-—I'-*&%; Tll)gj

(48)
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The nexghbourhood of a solid surface.
83. In this case we have by the corollary to theorem (II.)

Sor(Q) = 80" (Q) {1 —f{lmn)e }<l——+m~+1z—>30- Q . . . (49)
or as in equation (39) |
J‘(Q):Aﬂ[ f {1—f(lmn)e (l—~+m—+n )SAsm 6d6de . . . (50)

In this case it is clear that the coefficients which correspond to L, Ly, &ec., Art. 82,
will be functions of the position of the point with respect to the solid surface, and will
depend on the value of f(lmn). f{lmn) will obviously depend to some extent on the
action between the molecules and the solid surface. It appears, however, that when
the solid surface extends in all directions in its own plane to distances which are great
as compared with s, and the variation Q is perpendicular to this plane, the result of
the integration of equation (50) is the same as that of equatlon (39) For taking the
solid surface parallel to xy

w+

o(Q)=0(Q)+(Q)

and by symmetry, since  varies only in the direction z, for two opposite groups such
as a, b

o(Q+o(Q=c"(Q+(Q)
=A+B . . . . . . . . . . (51)

Therefore the integral of the last term of equation (50) for A will have the same
value but the opposite sign as for B. Hence since the solid surface can only be on

one side of the element, say the side A C G E, fig. 10, Art. 66, and 7; will be infinite

for the group B, or for this group equation 50 is identical with equation 39, therefore
for either of the opposite groups the results of the integration of (50) are the same as
of (39).

Near the edge of a solid surface, or when Q varies in some direction parallel to the
surface, equation (51) no longer holds good, and then the coefficients corresponding to
L, L, &c., will depend on the position of the element with respect to the solid surface
and on the action between the molecules and the solid surface.

In dealing with such cases two courses were open—the one was to try and find
some form for f{lmn) which would satisfy the equations, the other course, and that
which is here adopted, is to introduce arbitrary functions s, s, in place of s, and
subsequently to determine the form of s; s, 50 as to satisfy the experimental results.
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84. The only case of importance in this investigation is that in which the tem-
perature varies along a solid surface and is constant at right angles.
Taking z= —c as the equation to the solid surface, and supposing the gas uniform

in the direction y, and that %z%’: 0, then if ayz are the coordinates of a point P

and z is greater than —c¢ the effect of the solid surface will be to alter the values
of s in the terms involving the differentials of p and «. Using a suffix to indicate
that the values of s for such terms is arbitrary, we may proceed to determine the
values of o(Q), as in Art. 82. The important cases are Q=Mu and Q=M.

. de dp
Remembering that s, refers to such terms in A C E G as involve - or -, and that

W =0, we have by the method of Art. 82 e
o (Mu)="5 " % _ ﬁpa(gj (59
wr 8, _dpa_sp au )
7. (M)=}pU — RCE i | .
(,;ziv[) LU dpe spau [ T

\/; de V2 dzJ

Further, to adapt these equations to the form required, put «, and u, for the mean
wt . w— "
velocity of the opposite groups w-+ and w—, so that o (M)= p%l‘, o.(M)= p%”.

Then since u may be taken as constant in the direction of z, we have by corol-
lary to theorem (II.) and equation (51)
’171 wy du - .
p'?J—pE-—-'—SpZZ—z— D (033)
Subtracting equations (53)
du_ 8—8 dpa dU

TP a T zyrdx—pdé

L qau . o
and subsmtutmg for 5 n equation (52)

s—s dx s gy

If the point P lies between two surfaces, then putting s, as an arbitrary function we
have
d'a K d&

-—S

(54a)
For further consideration of s,—s, see Art. 96.

[ This section (VIL) was revised and somewhat enlarged in August, 1879, in accord-
ance with a suggestion made by one of the Referees. ]
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Secrion VIII.—TaE EQUATIONS OF STEADY MOTION.

85. If Q is a quantity of such a nature that SQ cannot change on account of any
mutual action between the molecules within a unit of volume; and further, if we
assume that the molecules within a unit of volume at any instant are not subject to
any influence other than those which they exert on one another, then whatever
change may take place in an elementary volume must be on account of the excess of
Q carried into the unit of volume over and above that which is carried out; and we

have
d2Q)_ _do(Q) doy(Q) do.(Q) (55)
at dx dy dz o
dEd(;Q) is the rate at which 3(Q) is increasing at a point fixed in space. Hence if the
condition of the gas is steady
azQ
—Et—z() e G 15))

Therefore if the condition of the gas is steady, we have

do,(Q)

doy(Q)
dx +

dy

do(Q
N

86. If, therefore, we put Q=M, equation (57) gives us the condition of steady
density.

Whereas if we put successively Q=Mu, Q=Mv, Q=Mw, we have from equation
(57) the conditions of steady momentum in the directions of the axes.

And if we put Q=M(v?+v?+w? we have the condition of steady pressure.

The condition that the gas may be subject to no distorsion or shear stress.

87. In order that o, (Mv), o,(Mw), o,(Mw), o,(Mu), o(Mu), and o,(Mv) may

respectively be zero for all positions of the axes, we must have
o.(Mu)=o,Mv)=0c,(Mw) . . . . . . . . (58)
Therefore from the first of equations (46) and like equations

ndan (Zpav dpaW
o e A

N 1)

These are the conditions that there shall be 116 tangetitial stress within the gas at a
distance from a solid.
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Coupled with the conditions for steady density, steady momentum, and steady
pressure, these equations are, within the limits of our approximation, equivalent to

2.2 42,2 2,2
N (1)
and
Y (13 )

where p the pressure is constant throughout the gas.

88. The important condition in this investigation is that the tangential force on a
solid surface shall be zero.

This condition can only be obtained by the aid of some assumption as to the action
between the molecules and the surface. An extremely obvious assumption will suffice,
viz.: that the tangential force on the surface has the same direction as the momentum,
parallel to the surface, of all the molecules which reach the surface in a unit of time.

The condition that there shall be no force on the surface is, then, that the momentum
parallel to the surface which is carried up to the surface shall be zero.

Thus, if the axial planes be solid surfaces, we have from the values of o-Z(—Mu),

w—

o,(Mv), &e., équations (45) that

A U=V=W=0. . . . . . . . . . . . (62
at the surface.

If, further, there is no tangential stress within the gas, it appears from equations
(59), (60), and (61), that equation (62) must hold throughout the gas.

The condition that there shall be no tangential stress on a particular solid surface,
say, the plane of xy, is satisfied if at that surface pa?® is constant and

and

dU  dV d

w—

This appears at once from the values of o,(Mu), (rz(_M?J) obtained as equations (45).
[The revision of Section VII. necessitated certain alterations in Arts. 87 and 88;
these articles were therefore revised in the proof, December, 1879.]

Sec1oN IX.—~APPLICATION TO TRANSPIRATION THROUGH A TUBE.

89. It will be sufficient to consider the simplest cases; hence it is supposed that the
gas is transpiring through a tube of uniform section, and further that the tube is of
unlimited breadth, the surfaces being planes parallel to the plane  y; the axis of  is
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taken for the axis of the tube, and it is assumed that all perpendicular sections of the
tube are surfaces of equal pressure and temperature, the variation of temperature and
pressure being in the direction .

The equations to the surfaces of the tube are taken

p=d4c .. . . . . . . . . . (63)

90. From equation (57) we have for steady momentum

-——{cr&(Mu) b+ {o-,(Mu) 5=0 . . . . . . . . (66)
for steady density
d d
| dﬁ%(M}}—{—(;;{o;(M)}:O Ce N (74
and for steady pressure
d d
i;c{axM(u2+v2+w2)}—I-&{O-ZM(@(?-]-@Q-J— whl=0 . . . . . (68)

Steady pressure not tmporiant.

91. In a tube, since heat may be communicated from the surface to the gas, the
temperature may be maintained constant; and if the density be steady the pressure
will also be steady, hence the condition of steady pressure ceases to be important. The
law of variation of temperature is determined by the sides of the tube.

Transpiration when s is small as compared with c.

92. If s is so small that it is unnecessary to consider the layer of gas throughout
which the direct influence arising from the discontinuity at the surface extends,

substituting in equation (66) from equatlons (46), and puttmg d (o-x(Mu)) which

we may do within the limits of our approximation, we have for steddy momentum,
since W=0 in the tube

%19___1__ d( dpaU
¢M$M>.‘..,....w)

And from equations (43) and (67), since p and « do not vary across the tube, we have
for steady density

S o =tpuy (1)

Since pu= pU-—:/—% % we have from equation (70)

MDCCCLXXIX, 5 1,
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w=0(71)

dx

And since the action of the tube is symmetrical about the plane @ y, we have at this
plane

-=O(72)

Therefore, integrating between the limits z and 0, we have from equation (69)

dgp s dU

Also, since s is constant across the tube, except within the layer over which the
influence of the surface of the tube extends, and which is not taken into account, we
have, integrating from z to ¢, and putting U, for U at the surface

&

mw_mzfﬁqm—m. (T

WOl
2,

. . dpa .
From equation (43) we have, since s '—(i— does not vary with z

plu—u)=p(U=U) . . . . . . . . . (75
Therefore, from equation (74)
VA W R/
u=—= pu(o )dw—l—u,, N ()
or putting
rﬂdz
O="2—. . . . . . . ... (T

so that O is the mean velocity of the gas along the tube, we have integrating (76), and

o

putting p= Bg~
0 ——Ajzhtc__ ﬁ e

(78)

oL 6 s

e ST
Sl

The relation between s and p.

93. The only respect in which equation (78) differs from the usual equation between
the motion of gas and the variation of pressure in a tube is that instead of w we have
2 p

—— g,

\/"n’al



PROPERTIES OF MATTER IN THE GASEOUS STATE. 809

dp__ d du
de— d\Pdz

D—thy==—— = . . . . . . . .. (79)

For putting
we have for the usual equation

and comparing (78) and (79)
#2-77;;6(80)

The difference between equations (78) and (79) is, however, very important. For
whereas u is usually supposed to be constant, e., independent of the diameter of the
tube, it appears from (78) that such can only be the case so long as ¢ is large as
oompared with s: s being a distance measured across the tube which by no variation
in the condition of the gas can be made larger than the mean diameter of the tube.

This fact that s cannot increase beyond the diameter of the tube at once explains
the anomalies (as they appeared to GrAmAM) between the times of tra.nspifation for
fine and coarse plugs.

The mean diameter of the interstices of GrRAHAM’S coarse plugs were so large, that
with gas in the condition in which he used it, s was less than this diameter, and not
being limited to the diameter of the tube was different for different gases and for
different conditions of the same gas; whereas with the fine plugs, s being limited to
the diameter of the tube, could no longer vary with the nature of the gas.

. The limit to the value of s also indicates, what has been verified by the experiments
described in Part I. of this paper, that the results which GraAEAM obtained with fine
plates only, are to be obtained with coarse plates when the condition of the gas is such
that s is limited by the diameter of the interstices.

The relation between s and the other properties of the gas.

94. The experiments made by GranAM and by MAXWELL in which the distances
between the surfaces was such that there was no chance of s being limited by this
distance, give consistent results, from which it has been found that

Py
oc~—,
H5
. . P . . . ’
Hence taking M:lj’j and substituting in equation (80) we have
é—‘ﬁf%‘ C (8

' 7 ,
* Added Dec., 1879.—Subsequent observers have found that u o (L)> so that MaxweLL’s conclusions

are not borne out.—See Phil. Trans., Part I, 1879, p. 240. This makes no difference to the subsequent
part of this investigation, as no farther use is made of eqnation (81).
5 IJ C)
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From which it appears that in the same gas

o@

SOC;).,.,,.......(SQ)
when not limited by the solid objects.

The general case of transpiration.

95. The equation (78) is obtained on the assumption that s is so small compared
with the diameter of the tube, that the layer of gas through which the influence of the
surface of the tube extends may be neglected, and hence this equation cannot be taken
as the law of transpiration when s, comes to be limited by the diameter of the tube.
And besides this, it is necessary to consider the value of u, which cannot be done
without considering the layer of gas throughout which the effect of discontinuity at the
surface extends.

In order to take the discontinuity at the surfaces z=--c into account, the values of
(M) and o,(Mu) must be taken from equations (53) and (54a). These values sub-
stituted in equations (66) and (67) give equations which correspond to equations (69)
and (70), but which involve the quantity s,—s,, which quantity it will be well to
examine before proceeding to the substitution.

The value of s,—s,.

96. Remembering that s, and s, are taken respectively to represent the mean range
of the quantity Q for the groups of molecules which have w respectively positive and
negative, and taking §’, §'y to represent the values of s, s, at the surface z=c, we may
express §,—S, as a function of s, ¢, and 2.

The fact that s,=s,=s when the point considered is without the range of the
influence of the surface, shows that whatever may be the value of s',—s, s,—s,
gradually diminishes as the point considered recedes from the solid surface, until at
some distance depending on s at which the mean range is unaffected by the surface
§,—8,=0. It also appears from the fact of the gas being symmetrical about the
axis of the tube that s,—s, is zero at the axis, so that even if the value of s, is limited
by the surface, s, approximates to s, as the point considered approaches the axis of
the tube.

The definite manner in which s, —s, varies across the tube could only be deduced by
taking into account the distribution of velocities amongst the molecules ; but as s;—s, .
must change after a continuous manner from one surface to another, we may take for
an illustration, or even for an approximation, any law of variation which fits the
extremes.

Such a law is given by

_(’:—j —04—:?
€ s =—=C s
81—82.':(8/1-—8,2)—1—‘”'—;;—' . . . . N B B . (83)
l—e s

in which «, is a numerical factor depending only on the nature of the gas.
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For the sake of distinctness it will for the present be assumed that s, —s, has the
values given by equation (83).

The velocity of the gas at the solid surfuce.

97. Putting ¢ for the tangential force on the solid surfaces z=+-¢, we have

g=o.Mw,. . . . . . . . . . . (84)
and by equations (53a) and (54a)
a -, - sy—sy da
9=2"fﬁ(u1_“2)f— 1271- 2pm@; N 1))

Also since ;lg is constant over the section, we have for the equilibrium of the fluid

between two perpendicular sections of the tube at distance dux
g==—mc>- . . . . . . . . . . . (806)

where mo is the hydraulic mean depth of the tube (in the case of a flat tube m=1);
therefore

P =\ 818y da_ dp
5T =g e ey (87)

Then if u, is the velocity along the solid surface, we have
2u=u\Fuy . . . . . . . . . . (88)

And since v/, is the mean velocity after encounter at the surface of the tube, we
may put

Fymfily e (89)

where fis a factor depending on the nature of the impact at the surface. Hence

2'zcv=i~_—f(u’1—-uﬂ) T C10))
or putting
14/

2=\ =) e o oL (90D)



812 PROFESSOR O. REYNOLDS ON CERTAIN DIMENSIONAL

And from equation (87)
Ji;izc:x{fﬁ——‘s'ﬁ (e ‘”P}. N (0,
™

o pa@ —_ 772/0(?‘%,

The coefficient of friction at the solid surfuce.

98. Since f or X is important as regards that which is to follow, it is necessary to
determine, as far as possible, on what these factors depend. I am not aware that any
very definite idea has hitherto been arrived at as to the action between the molecules
of a gas and a solid surface over which the gas may be in motion. It appears to have
been thought sufficient in most cases to assume that the gas in immediate contact
with the surface is at rest, which supposition is equivalent to neglecting any small
motion there may be.

We see at once that the gas at the surface must have a velocity when the gas
further away is in motion. For by our fundamental assumption the molecules which
approach the surface will partake of the motion further away ; so that even supposing
the surface to be perfectly rough, the entire group, consisting of the approaching and
receding molecules, would have a velocity equal to half that of the approaching
molecules.

If the surface be less than perfectly rough, we have, as in equation (89),

wo=fu’
where f~! may be considered to be the coefficient of roughness.
Since we have nothing in nature analogous to perfect roughness, we may assume

that f is not zero, and the question arises whether f may not largely depend on the
angle at which the molecules approach the plane.

Even if the solid surface were a perfectly even plane, ! would not be the simple

s

coefficient of friction, but must also be a function of the force with which the molecules
strike the surface, and the more nearly perpendicular to the surface was the direction
of approach the smaller would be the value of f.

Whereas if, as seems highly probable, the action between the molecules and the
surface is closely analogous to that between a ball and an uneven but perfectly smooth
elastic surface, then for molecules approaching the surface at very small angles f would
be unity, while for those approaching in a manner nearly perpendicular f would be
zero, or nearly so.

The variation of f with the angle of approach can be of no particular moment so
long as there is a sufficient thickness of gas between the surface considered and any
surface which may be opposite, for in that case the mean angle of approach must be
the same, whatever may be the condition of the gas. But when the gas is between
two surfaces, as in a tube, and these surfaces are so near that the molecules range
across the interval, then the fact that if small the angle of reflection (measured from
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the normal) will always be less than the angle of incidence, must cause the molecules
to assume directions more and more nearly perpendicular to the surface as the tube
becomes narrower, until some limit is reached.

The case of a billiard ball started obliquely along the table will serve to illustrate
this. Each time the ball leaves the side cushions its path will be more nearly perpen-
dicular, and if it could maintain its velocity, and the table was sufficiently long, it
would eventually be moving directly across the table. This, however, would not be
the final condition if the cushions were zigzag, for then a number of balls, in whatever
direction they might be started, would finally attain a certain mean obliquity, depend-
ing on the unevenness of the cushions. And it would seem probable that the latter
case must be that of the molecules in a tube so narrow that they can range across.

The ability of the molecules to range across the tube will depend on the value of g ;
hence it would appear that the most probable assumption with regard to the nature
of \is that ‘

4 4

where fl<—§> and f2<i> are functions of some such form as —é(j) , E(é’) having respectively
S

the values unity and zero when »§=O, and zero and unity when g::oo; and A is a

coefficient independent of the nature of the gas on which A\, may depend.

That there is good reason for making this assumption appears from the comparison
of the results for hydrogen and air (see result VIIIL., Art. 106).

The equations of motion as affected by discontinuaty.
99. Substituting in equation (66) from equation (54a), and putting éﬁ for R (Mu)
as in Art. 92, we have for steady momentum along the tube

W' [ spe di_nmsy ] _ ,
dm+dz{—\/—7;'dz o P%ix =0. . .. o (92)

Whence integrating between the limits 0 and z

dp  spadu  §—s, da )
A;iw—\/.v}dz+~2'n' pa(i’;r. oot (93}

And substituting for s,—s, from eqnation (83)

— id _eks
spa du _ dp € @s—g @O
el —
Nomdz Cdr 20

1 —p 8

N )

2 da.
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Integrating equation (94) between the limits ¢ and z we have

2¢ —2 c+z
spa ~ ~. =2 dp ) 14e @8 g @s fg @s , , Bﬁda
\/,’_r(u-—uc)—-— 9 dw-'_al‘s _E.— 2 j(s 1-—82)277.;&; . (943‘)
1—-—6 a8 1—0 a,s

foudz

Integrating again between the limits 0 and ¢ and putting 2=2"", we have, substi-

tuting for u, from equation (91),

spx. ¢ p
VL = <3+smc)\> I

2c
1+e @8 % , \pa da
+<a18 20-—7—.5%)(' —Sg)ﬂ'gx“ Ce e e e (95)

1—¢ @S

100. Equation (95) is the equation of transpiration in a flat tube on the assumption
that

C z (3+%

e Tays g S

/ oy
8§ == (1—5)

1 —¢ as

A slight modification however is all that is necessary to render the equation perfectly
general.

The only way in which the shape of the tube enters into the equation is in the co-
efficient of the first time on the right-hand side, 7.e., the coefficient of % e and whatever
may be the shape of the tube this coefficient will be of the same form as far as the
linear dimensions of the tube are involved, the only possible difference being in the
numerical coeflicients of ¢ and sc\. Therefore if ¢* be multiplied by a coefficient A,
which depends on the shape of the tube, since m also varies with the shape of the tube,

. d
we have for the general coefficient of d~—Z

[
s <.A.; +m )\>

As regards the coeflicient of tlus is affected by the assumption as to the par-

ticular form of (s)—s,) ; and if we assume a general form for s, —s,, such as

() —e= ()
8 =8, =< —— = $ R (1
1 2 { 1 — 6__( s)u } ( ( )

the coeflicient of the last term would still be of the form
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SubaRY

. c . . c . . .
wherein f <§> varies continuously as < varies from 0 to o, having a finite value when
Cu vp . c c.
— is infinite and being zero of the order B when S 1s zero.
s

101. The factor s’,—¢', is clearly a function of c, g and \g, where \; depends on the

nature of the impacts between the gas and the tube. And, moreover, when 72 is small
and the molecules cross the tube without encounter, s, —s’, is proportional to c—it may
be shown that in the case of a flat tube s,—s,=mmec, and in the case of a round tube
81— Sy=mmc <1 —|——27-T>, for tubes of other shapes s,—s, would have an intermediate value

—so0 1n this case we put

’ ro_ 7
§' =8 y=mm/c.

. c. .
Again, where Sis large, then s, —s¢’, is equal to sh,.

Hence, as a perfectly general form for s',—s’y, we have
’ ’ ’ 4 c .
sl—szzwmcf3<§> +s}\3f4<;> Coe e e e (97)
wherein f3<§> is zero when z is large, and unity when g is small ; while f4<§> is unity

c. ¢ .
when S s large, and zero when S s small.

The general equation of transpiration.

102. Substituting in equation (95) from equations (96) and (97) we have

pan=—y/ro{ AL m| 2
o (AL H (2 0 et

2 )
Or since Art. 72 p:%x, 1&:K%@’, and Art. 98 )\=)\1f1<°>+)\2f2<—z-> we have, remem-

S

(98)

bering that M is constant,
MDCCCLXXIX. S M
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"ZO ‘/W {A +m\ [ ( >-|—m)\2f2< >}; ZZZP | l
)

el s

(99)

in which
A depends only on the shape of the tube and is & for a flat tube,

. Ve [ .
¥ <—> is of the order - - when ~ is zero and is finite when < is infinite,
S S S
e c . ¢ . Cov
S N and f ~ ) are unity when S 18 zero and zero when - is infinite, and
b S

¢ ¢ ¢ . . Cov
f2<;> and ﬁ(g) are zero when S 1 zero and unity when S s infinite ; all the func-

tions varying continuously between the limits here ascribed.

Also \; depends on the nature of the surface but not upon the nature of the gas,
while A, and Ay may depend both upon the gas and the surface.
Putting

B rmfhen()]
n=almEpn G ntcpenst)

we have for the general form of the equation of transpiration

Q:—o,\/?{F(EZZ F<g>; (M)} ... . (101)

SECTION X.— VERIFICATION OF THE GENERAL EQUATION 0F TRANSPIRATION.

all

-
—
[l

103. In this section the general equation obtained in Section IX. is applied to the
particular cases of transpiration which have been the subject of experiments. It will
thus appear how I was led to infer the results, and thence to make the experiments.

A summary of the experimental results has already been given in Art. 9, but for
the immediate purposes the results may be stated as follows :—

Lxperimental results.

I. The law of corresponding results at corresponding densities, shown by the fitting
of the logarithmic homologues. (See Arts. 28 and 40.)
IL The gradual manner in which the results varied as the density increased,
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shown by the continuous curvature-of the curves which express these results. (See
Plates 47, 48, and 49.)

III. The uniformity in direction in which both the time of transpiration under
pressure (see Tables XIV. to XVIL), and the ratio of the thermal dyfferences of
pressure to the mean pressure (see Tables ITI. to XIIL) vary as the density increased.

IV. The fact, sufficiently proved by GramAM, that, ceteris paribus, the times of
transpiration are proportional to the ratio of the differences of pressure to the mean
pressure, the difference of pressure being small.

V. The fact, to a certain extent taken for granted, that the ratio of the thermal
differences of pressure to the mean pressure are, cawteris paribus, proportional to the
ratio of the difference of temperature to the absolute temperature, this ratio being
small.

VI. The continual approximation towards constancy of the time of transpiration
under pressure as the density diminished. (See Tables X1V. to XVIL, and diagram 1,
Plate 47.)

VIL The relation between the ultimate values of the times of transpiration for
different gases (air and hydrogen) for small densities ; the times are proportional to the
square roots of their atomic weights. (See Art. 42.)

VIIL The fact that the times of transpiration for the same gas in capillary tubes,
and at considerable densities, are inversely as the density and independent of the
temperature.—MAXWELL* and GRAHAM.T '

IX. The difference in the variation of the times of transpiration for different gases,
shown by the fact that the logarithmic curves for hydrogen cannot be made to fit those
for air.  (Plates 47, 48, and 49.)

X. The approximation towards a constant value of the ratio which the thermal
differences of pressure bear to the mean pressure as the density diminishes, whatever
be the gas or plate, the ratio is that of the difference of the square roots of the
absolute temperatures to the square root of the absolute temperature.

XI. The approximation, as the density increases, to a linear relation between the
thermal differences of pressure and the reciprocal of the density.

XTI The difference between the law of variation of the thermal differences of
pressure for different gases, as shown by the non-agreement of the logarithmic
homologues for air and hydrogen. (Plates 48 and 49.)

XIII. The transpiration of a varying mixture of gases through a porous plate.
—Investigated by GrAHAM.

104. In order to bring out the agreement of the experimental results with those
deduced from the equation, we put

; for the time of transpiration.
* Phil. Trans. 1866, pp. 249-268, also note to Art. 94. + Phil. Trans., 1849, pp. 349-362.

b M 2
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bgﬁ for the difference of pressure on the two sides of the plate.

bg; for the difference of temperature on the two sides of the plate.

The suffix s will be used to distinguish quantities relating to the stucco plate, and
m to distinguish those relating to meerschaum.

x 1y are the coordinates of a point on any one of the curves on fig. 8, Art. 40, or
Plate 48, which are the logarithmic homologues of the experimental curves.

105. The experimental result I. follows from the general form of equation (101).

For putting, as in the experiment on transpiration under pressure, ;Z%; =0 and M

and - 2 constant, equation (101) becomes

p dz
__w(e w1 dp
Q= cF1<s> Mo (102)

The times of transpiration are proportional to & L for the same tube or plate, and if
v be a factor depending on the number and size of the openings through the plate,
we have the time of transpiration equal to %

Putting

y:log%, oc=log—1§. e e e e (103)

And indicating the quantities referring to particular plates by s and m, we have

x,+log ¢,= log = L
{ (104)
l

x,,+log cm_log n
Hl J

Whence taking the coeflicients A, m, \;, Ay, to be the same for stucco as for meer-

cﬂl

schaum (see Appendix, note 4), it follows from equation (102) that when o=

S Sm
x,=x,+log %"'L 1

N ¢ ()

and B oa®Vs | (105)
Ys=Ymn—" Ogc;_‘;; Jl

Hence we see that the curves expressing the relation between the logarithms of the
reciprocals of the mean ranges and the logarithms of the times of transpiration
must have the same shape for different plates, such as stucco and meerschaum. And,
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moreover, that the difference between the abscissse of corresponding points for the
different plates is the logarithm of the ratio of the coarseness of the plates whatever
may be the nature of the gas.

In the experiments we have an exactly similar agreement between the curves
expressing the log. (densities) and the log. (times).

Hence the only point of difference between the results deduced from the equation

and those derived from the experiments is, that the one depends on % and the other

upon p—the temperature being constant. Whereas it appears not only as in Art. 93,
but in whichever way we examine s, that however s may vary with the molecular
mass and with the temperature, it must be inversely proportional to the density.

Therefore the fitting of the logarithmic curves is a direct inference from the form of
the general equation (101).

We also see that the common difference in the abscissee of the curves deduced from
the equation is the logarithm of the ratio of the diameters of the interstices; and
hence we infer that the difference in the abscissee of the experimental curves for
meerschaum and stucco gives the ratio of the mean diameters of the interstices in
these plates. (See Appendix, note 4.)

The common difference in the ordinates is, according to the equation, the logarithm

. 7”08
of the ratio v

m s

theory in as much as they show that the common difference is independent of the
nature of the gas—the same difference being obtained with hydrogen as with air—
and depends entirely on the plates.

The fitting of the curves which express the logarithms of the thermal differences of
pressure follows in a precisely similar manner from equation (101).

; and although v, and v, are unknown, the experiments verify the

. 1d .
In these experiments £=0 and - —; and M were constant, so that equation (101)

d.
becomes
\Ldp AM dr
F1<;>§ dx_F2<;>T .. (108)
And putting
—log 2
y=log dz
1
x=log ;
we have as in the previous case, supposing the coefficient in F, and F, to be the same
for stucco as for meerschaum (see Appendix, note 4), where ?:g’f

w,=x,,~+log %
[ P ¢ 11} 4
Yo=yu~+log™" |

P
s
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And since 7 and M are the same for both plates

Lu__ P
PP

Hence in this case, according to the general equation (106), the common difference
in the ordinates of corresponding points is the logarithm of the ratios of correspond-
ing densities, while the difference in the abscisse is the logarithm of the ratio of the
coarseness of the plates which is the reciprocal of the ratios of the mean ranges. If]
therefore, as has just been assumed, the densities are proportional to the mean ranges,
the common difference of the ordinates should be the same as that of the abscissae, and
the same for these curves as for those of transpiration under pressure.

Thus we have excellent opportunities of verifying the conclusion that s varies
inversely as p, and the indication as to the manner in which ¢ enters into the relation
between dp and dr.

This verification is complete, for although there is a slight discrepancy between the
common difference for the ordinates and that for the abscissee, this, as has been
explained in Art. 30, was in all probability owing to certain discrepancies in the
difference of temperature maintained on the two sides of the plates (see Appendix,
note 4). And even if unexplained these discrepancies are small enough to be neglected.

The actual differences are as follows :

Thermal Transpiration. Transpiration.

Plates. Abscisse. Ordinates. Abscissee.
Meerschaum No. 3, and Stucco No. 1 ‘698 775
. 5 " 5 2 745 ‘890 ‘819

Thus the dependence of transpiration on the ratio —z first revealed by the theory as

expressed in equation (101) has been completely verified by the experiments of trans-
piration under pressure, and on thermal transpiration. And it must be noticed that
while the verification has been obtained both for hydrogen and air, the experiments on
either gas suffice for complete verification. And thus the exact agreement of the
common differences both of ordinates and abscisse for the two gases (although the
absolute ordinates differ widely, and the shapes of the curves differ considerably) not
only affords a double verification, but precludes the possibility of accidental coincidence.

It is further to be mnoticed, both with respect to the foregoing comparison of the
theoretical with the experimental results, and also with respect of such further com-
parisons as will be made, that the reasoning admits of being reversed ; and instead of
deducing the experimental results from the equation, it might have been shown that a
similar equation is the necessary outcome of the experimental results. Indeed, this
has been already done, and it is only out of régard. to the length of this paper that I
refrain from including the inverse reasoning.

106, The experimental results II. and IIL follow at once from the fact that the
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. . c. . . .
various functions of PR equation (101) increase or decrease continuously between the
¢ 4
values -=0 and =

Results TIV. and V. also follow so directly from equatlon (101) as to require no
comment.

. . c .
Results VI. and VIL refer to transpiration under pressure When; is small. Under

. . dr .
these circumstances, since =0, equation (99) becomes -

o ™ on, - L (108)

—— —— ()

KT 2 Yods -

1dp
and taking, as in the experiments, 7 and ’ T constant, we have for the same plate

MmNy
VA
which is result VL.
And assuming, as in Art. 98, that m\, is independent of M or any property of the
gas, we have

and therefore the times of transpiration of the different gases through the same plate
are proportional to the square roots of the molecular weights, which is experimental
result VIL

This result, therefore, verifies the conclusion arrived at in Art. 98, that when the
tube is small compared with s the effect of the impacts at the surface is independent
of the nature of the gas. |

Result VIIL. relates to transpiration under pressure when z 18 large.

Then we have from equation (99)

o) - ¢ 1dp
e ....EZE (}(_A_:; +7”)\,2>"2_) ’}‘ . . . . . * . (109)

. 1d ; . .
Therefore since 7, M, and , d—i are to be taken as constant; when g becomes sufficiently

large

1
Qoc —,
s
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that is

Qo p;
and this is result VIII.

. c. .
In order to compare different gases we have, when Cis sufficiently large,

_ A [ E 1 dp
Q_—z— ﬁAspdx""""(Ho)
Therefore
1
Qoo AT

This gives the relative values of s for different gases; as, for instance, air and hydrogen.
Grauam found that the times of transpiration of these gases through a capillary tube
are in the ratio 2°04. The ratio of the square roots of the molecular weights is 3'8.
Hence at equal pressures and equal temperatures the mean range for hydrogen is to
the mean range for air as 3-8 is to 2:04.

It appears, however, at once from the equation that these ratios are not constant

C. [ . . .
unless; is very large. As S—dlm;lmshes, the term involving A, becomes important, and

it is to this term we must look for the explanation of the result IX.—the marked
non-correspondence of the curves for hydrogen and air. If A, depends on the nature
of the gas then this difference in shape is accounted for, which confirms the conclusion
of Art. 98 that when the tube is large compared with s the effect of the impacts at the
surface will probably depend on the nature of the gas.

107. Result X. refers to the thermal differences of pressure when g is small.

ld'r

In this case =0, while - and M are constant.

Equation (99) becomes

B —= R € 2 )

The exact relation between m and m’ would appear, as explained in Art. 101, to
depend on the shape of the section of the tube, and to be somewhere between 1 and

2 . . . . .
1 +7—T, its respective values for a flat and round tube. This view, however, is based on

the assumption that the molecules are uniformly distributed as regards direction,
whereas it appears probable, from reasoning similar to that of Art. 98, that the mole-
cules tend to assume a direction normal to the surface, and in this case for a tube of

e . m’
curvilinear section the value of - would be reduced.
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According to the experiments, it appears that as the density diminishes, % approaches

to unity; but owing to the impossibility of measuring the exact difference on the two
sides of the plate this determination is not very definite.

Result XI. refers to the thermal difference of pressure when Sis large.

. L 1d
In this case =0, while o ;é, and M are constant.

Equation (99) becomes

¢, NLdp_1sf [ 1dr
(A—é+m’)\2>pdw—27rc<j<s>+}\2>q-dw' e e o0 (112)

. . c .
in which f <;> has some finite value.

In the limit, therefore, we may neglect m),, and we have

d 1 s§? . 1dr
_Z_Jz__ S_<f<§>+)\2>; ga; L (118)

. 1 .
And since s« ; and ¢ is constant
ldp 1ldr

o == 4T
pdz  p*Tdr
which is result XI.

Since the coefficient of % Cﬁ- in equation (113) involves \,, which (Art. 98) depends

d
on the nature of the gas, this equation indicates that different results would be
obtained with different gases.

And this appears still more in the case of intermediate pressures when m\, on the
left of equation (112) is important.

These conclusions are according to result XIIL., which therefore affords additional
proof of the correctness of the conclusions in Art. 98 respecting the value of \,.

108. T have now shown how I was led to predict the experimental results, and how
in every particular the experiments have verified the theory, both as regards transpi-
ration under pressure and the thermal differences of pressure. This concludes the
application of the theory to those experimental results of transpiration which were
revealed by the theory.

There remains, however, an important class of transpiration phenomena of which,
as yet, no mention has been made. These are the phenomena of transpiration when
the gas on the two sides of the plate differs in molecular constitution.

Transpiration by a variation wn the molecular condition of the gas.

1084. These phenomena are well known, and were experimentally investigated by
GrAHAM, but hitherto, I believe, no complete theoretical explanation of them has been
MDCCCLXXIX. 5 N
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given. The diffusion of one gas into another has been explained by MAXWELL; but
what has not, so far as I know, been explained is, that there should result a current
from the side of the denser to that of the lighter gas. Indeed, from the manner
in which these phenomena have been for the most part described, it would appear
that the importance of this current has been overlooked ; for, owing to the fact that
a larger volume of the lighter gas passes, the phenomena are generally described as
if the current were from the lighter to the denser gas.

These phenomena of transpiration, like those already considered, may be shown to
follow directly from the theory. But as has been already mentioned in Art. 73, in
order to completely adapt the equations of transpiration to the case of two or more
gases, it would be necessary to commence by considering the case of two or more
systems of molecules having different molecular weights, after the manner adopted by
MaxweLL* Such an adaptation of the equations is too long to be included in this
paper ; but it may be seen from the equations, as they have already been deduced, that
these particular phenomena would, and in some cases do, follot.

Suppose that the gas on the two sides of the plate is at the same pressure and tem-
perature, but that there is a difference in molecular constitution as air and hydrogen.
Thus when the condition has become steady there will be a gradual variation of the
molecular condition of the gas through the plate; in this case 7 is constant and p is
constant, but the mean value of M varies.

If we take M, and M, (as the molecular masses of the two systems of molecules), and
consider a case in which M, differs but very slightly from M,, equation (98) becomes

_ dM
pn=—cF2<§>K\/Tﬁ;-d; C e e e L (119)

where M is the mean mass of the molecules, or if p1 and p, are the densities of the

two gases
— M, M

M=_——"1"2 )

Vopr Mg P P2)
; =P N=F
Whence, putting N,=-F, No=,
Ml 2

M ___Ii 1M1 + N2M2
N1 +N2

And since the pressure and temperature are constant
N,+N,=N

where N is constant throughout the gas.

* Phil. Trans., 1867.
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Therefore
dM__ M, —M, o dp
n= x N=y
and (114) becomes
¢ - 1 dp
pQ=—0F2<;>K\/77ﬁ&; S e e (1]5)
If ° is small, then F2<E>=%m')\l.
S S
Hence in this case
c ., 1 dp
PQ=—lm}‘1K‘/;7ﬁ&£ Coeee e o (116)

And this is in exact accordance with GrAamAM'S law, which is that the rate of

transpiration is proportional to the difference in the square roots of the densities of
the gas. For—

dp dN
= (Ml_Mz)”(Zj’

and since M;—M, is small
dp . dN
dr =/M{v/M,— \/Mz}—dj
or

, - — AN
pO=—mhe/7{ /M —/ M} L (117)

This form of equation is obtained by neglecting the difference of M, and M,; but by
taking into account the two systems of molecules throughout the investigation, an
equation similar to (117) would have been obtained without any such assumption.

Thus we see that the general equation of transpiration may be made to include not
only the cases of transpiration under pressure and thermal transpiration, but also the
well known phenomena of transpiration caused by the difference in the molecular con-
stitution of the gas. And in this case, as in that of transpiration under pressure, the
equation reveals laws connecting the results obtained with plates of different
coarseness and different densities of gas, which doubtless admit of experimental
verification.

This completes the explanation of the phenomena of transpiration through porous
plates.

SectioN XI.—Application to apertures in thin plates and tmpulsion.
Condition of the gas.

109. When the gas within a vessel is in uniform condition, excepting in so far as it
18 éhsturbed by a steady flow of gas or of heat from what, compared with the size of
3N 2
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the vessel, may be considered as a small space, such as a small aperture in the side of
the vessel or a small hot body within the vessel, the effect of such steady flow will be
to cause a varying condition throughout the gas. The lines of flow, whether of heat or
of gas, will diverge from the exceptional space, and the surfaces of equal pressure and
temperature will be everywhere perpendicular to the lines of flow of matter and heat
respectively. Except in the case of absolute symmetry, the lines of flow will not be
straight, nor will the directions of the lines of flow in the immediate region of any
point focus in a point.

But in the immediate neighbourhood of any point P, the direction of the lines of
flow must be such that the directions of the lines of flow parallel to some plane, x ¥,
will converge to some point C, while the directions of the lines of flow parallel to the
perpendicular plane @ z will converge to some point C” in CP, which it will be seen is
taken parallel to the axis of .

Whence putting PC=7, and PC’=r, the surface of equal pressure or temperature
at P will be a surface perpendicular to x, and having =, and #, as its principal radii of
curvature in the planes of x y and @« z respectively. The simplest cases are those in
which either the two radii are equal or one is infinite, and these are the cases which
will for the most part be considered.

Tt will at once be seen that at any point within gas in the condition just described,
p, @, w4+ +w? and U+ V2+W? are functions of 7, 7.

Also, remembering that the axis of x is taken in the direction of the lines of flow

at P, the point considered, we see that at P, V, W, v, w, are severally zero, as are also

U AU BV EW AV AW
dy’ dz’ dy®’ d*’ dx’ dw’ ©

PV _1dU_ 1.0
TR
U 1dU0 1 :
& T d Y
a _U

dy 7y

WU P ¢ D £}
dz 7,

ey _1du_ 1
dedy™ v, dz 727
oW _nav_1
dedz ™ v, de )

. . . l 1 .
Also putting f(pe) for any function of p and «, (;7/ F(per) and Z(ij f(pa) are zero, while
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dy® vy, dx

Pf(px) _ 1 df(pe) 1

119
Pfp) _ 1 dflps) (119)

d2 ", de ]

The equations of steady condition.

110. Equations (118) and (119), together with equations (43) to (47), enable us to
obtain from equation (57) the equations of steady condition.
For steady density

5{7T<PU \/S*‘Z’r)} 0. . . . . . . . (120

For steady momentum putting, as before, dl_p l—(o-,,(Mu))

dp 2s d 1, 1\ _
— 2l U<,ﬂ+rz>}_o R 1)
For steady pressure
d 3 dpa
E g N —
dx{m( U~ dq)} 0 . . . . ... (122)

These equations (120), (121), (122), might be treated in a manner similar to that in
which the corresponding equations for the case of the tube were treated in Section IX.,
but for various reasons another method commends itself.

In the first place we cannot in this case ignore the condition of steady pressure, for
there can be no lateral adjustment of temperature as in the case of the tube. (See
Art. 91.) The physical meaning of this is, that in this case the condition of the gas
cannot be supposed to vary uniformly even along the lines of flow. It must vary after
a fixed law, and this fact restricts the conditions under which the equations can be

2
considered to hold to points where ; is so small that <§> may be neglected. So that

any general result obtained from these equations would only apply to points at
considerable distances from the foci C and C'.

Again, these equations as they stand include the case in which the flow of the gas
may be caused by a considerable difference of pressure, as, for example, transpiration
through a small aperture under pressure, whereas if we exclude this case we may,
2 _*2
Ly
their application to the cases which it is our principal object to explain.

by neglecting such terms as very greatly simplify the equations without affecting
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These two cases are as follow—

1. The flow of gas through a small orifice in a thin plate when the mean pressure of
the gas is the same on both sides of the plate, the flow being caused by a difference in
temperature on the two sides of the plate, or a difference in the molecular condition of
the gas.

2. The excess of pressure which the gas exerts on a small body when the body has
a higher temperature than the gas.

Thermal transpiration through an aperture in a thin plate.
111. In this case, since there is no tangential stress, we have (Art. 87)

U=o.
Whence by equation (121)

l
B_,

L (122a)

Since p= P;jf we have, integrating equations (120) and (122), respectively

Tywz"ifz \f_/lragG: -]I

de 2sp (122]0)
B |
" Fda bsp ™" )

BH

207,

G and H are constants, such that is the rate at which heat is carried across a

AJ

unit of area, and is the rate at which matter is carried across.

Ty,

From equation (122b) we have
H=—382G . . . . . . . . . . (128)

Equation (123) can only be approximately true as o? is not constant ; therefore the
condition U=0 is not possible, 7.e., it is only approximately fulfilled, whence it follows
that p is only approximately constant. The closeness of these approximations will
depend on the variation of «® and within the limits of our approximation we may con-
sider the condition to hold.

From equation (123) we see that the direction of flow of gas is opposite to that of
the flow of heat, while since &? o« 1%4—, the rate of flow of gas is proportional to the flow
of heat, to the mass of a molecule and inversely proportional to 7, the absolute
temperature.
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By equation (48) we have
s dpa

pu=- \/7r dz’

or since pe? is constant
(124)

I
R

S
ot

u =

g

which it may be noticed is of the same form as results from the equation of transpira-

tion through a tube when p is constant.
Thermal Impulsion.

112. In this case there is no motion, therefore

u=0,

whence from equations (48) .
s clpac -

This satisfies equation (120).
Substituting from equation (125) in equations (121) and (122), and remembering

2
that pzzeg- \/ o (pocU), Art. 82, we find that these equations lead to the same
result if pa? is constant.

2
Putting plz% we have from equation (122)

d do
in wymspl% =0,

whence integrating
\/ -H 1
dx- Ty, . Coe oo (126)

where H has the same value as in Art. 111.
=1, also considering s constant, we have differentiating

d
Remembering that —* — ——cf
Pa__ /e H 1/1 +_
da? ™ 11 Spy Tyr\Ty | Ty

oA de L e

Ty, do
Also putting 7,=7,, a=a«’ when r=c and a=a, when r=c, and integrating

equation (126), we have
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_ v H 1 1 I
a—o'= =T o7
C , p
_;‘ (OCU':—OC ), > (128)
—-l,«idga
e d(l}'?'. v,

In a similar way we obtain from equation (121)

o I

de ]3 Y 7, du

whence integrating

— — 5 e

o d

=

ij&):_fl_sk{_l_ 1}1(70( IS o (130)

" w7y

and from (127)
Pe=Po__ 4s* 1 dPa C
] —C,

V41 T oA duo <
. . dPa
If » be infinite p,=p,=p, and =0 Therefore C,=0 and
Pe=i_% o1 P
= Coo L (131)

which result may be obtained directly from the value of p,, Art. 82.
From equation (128)

Pa—Po__ 8 a—d

p m?
B wme [T .. (132)
Tt a

2 . d*a
as compared with -
(477500

Puttmg ~ =«%? and neglecting L (-ZZ

Pe=py__2 oM &2 /T\¥ ‘
pl_WsdezM...........(133)

NAVER
8 & M~ M

_———

T 7? /\/
M
e e e (134)

N i A
_8 os2
o /\/

M J

* From an abstract of & paper read before the Royal Society by Professor MaxwrLL, in April, 1878
(see ¢ Nature,” May 9, 1878), I see that Professor MAxweLL has obtained an expression for this inequality
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From equation (127) we have

p 11 /7 pa 7}

(135)

BH

> 2y,

where, as before is the quantity of heat carried across a unit of surface.

At points near to the surface.

113. In equations (131), (182), and (135) no account has been taken of the dis-
continuity in the immediate neighbourhood of the surface ; hence the results obtained
from these equations may not hold good within the layer of gas of thickness s, which
is adjacent to the surface.

In order to take this discontinuity into account, the equations of steady conditions
should be modified in the manner described in Art. 84, but for this particular case the
same thing may be accomplished in a somewhat simpler manner.

Suppose the solid surface to be either spherical or cylindrical at the point considered,

and put ¢, for the radius. Then it is obvious that when % is very large the pressure

on the surface will be but slightly affected by the layer immediately adjacent to the
surface, 1.e.; putting p,, for the pressure at the surface, and p,,., for the pressuge at a

distance s from the surface, 1 —p&:%l)— is small when E} is large.
er+s P .

When, however, the gas surrounding the surface is limited by another surface,

of pressure or ‘‘stress” arising from the inequality of temperature. The result given by Professor
MAXWELL is ' :
. _Su* d%
P=—h 00 dF

where u is the coefficient of viscosity, 6 the absolute temperature, and = any one of the three directions
@, y, 2. This result, when transformed to the present notation, becomes

And if we put, as in equation (80),

we have
pe—p;_6 o1 dr
L Fl=" g% 7
" a7 daf )

It is thus seen that the two results are identical in form, but that Professor MAXWELL makes the
pressure just three times as great as that given by equation (133).

In the abstract published in ¢ Nature,” MAXWELL has not given the details of the method by which he
arrived at his result.

MDCCOCLXXIX, D0
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(which for simplicity may be taken concentric and of radius ¢,), then in order that

1_ ]‘701 —p Cy
Pe,vs—Pe,—s 5
Our equations, therefore, may be seen to hold good when the radius of the solid

surface is large compared with s and the distance between the opposite surfaces is also
large.

On the other hand, in the limit when either%lor

o —cy

C
may be small, we must have large as well as -
$

6 —¢,

~— are very small p,—p, and

Pe,—p. will depend entirely on the action of the gas within the layer of thickness s

. . . c Cy—C
immediately adjacent to the surface. In these cases, however, when s—l or +—2 ; ? are

small, the action within this layer may be easily expressed.

114. Let the temperature of the internal surface (sphere or cylinder) be such that
the mean value of « for the molecules which rebound from this surface (considered as a
group in a uniform gas) is a, ; while the temperature of the external surface is such
that the mean value of « for the molecules which rebound is o”.

.. C ¢, —C, . .
The condition that ;1 or 2—2? are small necessitates that the molecules which come
S

up to the inner surface arrive as from a uniform gas such that a=«’. That is to say,

none of the molecules which rebound from the inner surface can return until their

Ci—Cy .
1 le

characteristics have been completely modified by the external surface. ~For if -

small the molecules will cross the interval between the surfaces without encounter,
)

while if % is small, although may be large, the characteristics of the gas will be

S
but slightly affected by the internal layer at a distance s from that surface, and, by
theorem II., the approaching molecules will arrive as from a uniform gas in the mean
condition of the gas at a distance s.

Ci=—0Cy .
! - 2 i small.

I shall first consider the case in which

The number of molecules which arrive at the inner surface is proportional to p'a’, and
the number which rebound is proportional to p.a,, and since the numbers must be the
same we have

pa’=pao.
’ 1
The momentum imparted to the surface by the incident molecules is %’—)—g—, and that
imparted by the rebonnding molecules is ”;”N, therefore

po=%p % (e, 4+) . . . . . . . . . (136)

Since the molecules which rebound from the internal surface all proceed to the
external surface, and the surfaces are concentric, we have
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e 2 oo
=5 +;72P4 (=) . . . . . . . . (187)
Therefore ' _
BLO. '—C
P—']O—P 2621(“—“,)
2
or
Pe—p Cy* —Cy° ag—aL
=R L (189)

Equation (138) holds whatever may be the value of 2 prov1ded 5% is small, and it

G—cy . iy 10 . G—Cy « 1
also holds when 2 - ! is large, provided ;‘ is small. When j; is small and “— is large

¢, may be neglected in comparison with ¢,, and we have
Pe—p __ %=

°
> ?a,..........(139)

Equation (139) is almost identical with what equation (182) becomes as s approaches
in value to ». If s=r, then the only difference in those two equations is in the co-
efficient. In comparing these equations, however, it must be noticed that in (132) « is
not the same as a, for a, only refers to the one set of molecules—those which are
receding from the surface, whereas a refers to both sets.

. C Co—C
At the surface when either —; or —°—b—‘ are small

o, + o
5

o=

Whence making this substitution in equation (132), and putting s=1 the coefficient
. . 8 . . .
differs from that in equation (139) by = which shows the extent to which discon-

tinuity at the surface affects the result.

General equation of tmpulsion.

115. From equations (132) and (139) we may form an equation which will hold for

all values of Z

For if the surfaces are spherical

)7
pe—p ¢ ¢ o ¢ M ’\/M
it s VIR
M

5 0 2
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~ And for eylindrical surfaces

—p’ Cg— AN | ‘¢, ¢ M M :
B p={%20201fs<6“1 6—2>+~ i—“‘";; f6<£1>b'2>} L oo (141)

Pt s’ s

¢ € G C ‘ . . . c O =—0C,
where j;(f, f> and jg<;1, f) are respectively unity and zero when either - or——

. . (% Cy—C . .
are zero, and respectively zero and unity when both = and —stl are infinite.
S

Equations (140) and (141) have been obtained on the assumption that the solid
surfaces are either concentric spheres or concentric cylinders. But these equations
indicate what would be the difference of pressure consequent on a difference of
temperature whatever may be the shape of the surfaces, and particularly so when

C Cy—C . . .
s—l and 2 : I are finite, which are the most important cases.

SECTION XII.—APPLICATION TO THE EXPERIMENTS WITH THE FIBRE OF SILK AND
THE RADIOMETER.

116. Comparing the equations (140) and (141) with the equation of transpiration
(101), it appears at once that when Q is zero these equations are identical in form.
Hence the curves expressing the relation between the impulsive forces and the density
of the gas under any given conditions would be of the same character as those
expressing the relation between the inequalities of pressure and density in the case
of thermal transpiration through a particular porous plate, and it is not necessary for
me again to examine this relation.

Besides which, the experiments on impulsion, elaborate as they have been, furnish
nothing like the definite results which I have obtained in the experiments on thermal
transpiration.

117. The principal results to be deduced from experiments other than those which
are contained in this paper, are :— ‘

(1.) That the force and motion are proportional to the difference of temperature,
which results are seen to follow directly from equations (124) and (140).

(2.) That with a particular instrument the forces increase with the rarefaction up
to a certain point, after which they fall off'; this result also follows directly from the
equation (140).

118. Equations (124) and (140) first revealed to me the fact that the pressure
of gas at which the force would become appreciable must vary inversely as the size of
the surface.

From equation (140) it appears that up to a certain point

: s

3
Gl

pe—p'e
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. 1 .
and since sc o and pes p it appears that

, L
Pe—p =< e?p'

So that with gas at a given density the smaller the surface the greater would be the
intensity of the impulsive force; and hence I was led to try the fibre of silk, with
which I obtained evidence of the force at densities of half an atmosphere; whereas
in the radiometer, with vanes something like 500 times as broad as the fibre of silk,
the force does not manifest itself until the density is very small indeed.

Larlier conclusions.

119. The equations (124) and (140) show that both the forces and the consequent
motion are, cwteris partbus, proportional to the heat communicated from the surface to
the gas; for by equation (128) a,—a’cc H where H is proportional to the heat commu-
nicated from the surface to the gas.

The necessity of such a relation was the subject of my former paper.® I then
obtained the formula

f"‘ d

39y
To translate this into the symbols of the present paper
JS=p.—p’,

Cl == g P
and

- According to my intention e should have heen equal et but from the manner in

which it was obtained it has the value given above (Appendix, note 5 (D)). Hence we
have '

__n/mH
p- p__l-S-cza‘

The corresponding equation (Appendix, note 5 (¢)) derived from equation (140) is

P = {50 2 Jr a8

or when g is small
* Proc. Roy. Soc., 1874, p. 407.
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_\/71' H
Pe—pP= 18 2
and when ° is large
S
,_ 8 1 s H

PP =11 /7 ¢ e

It thus appears that the present results entirely confirm the previous results so far
as they went ; and the present investigation is a completion, not a correction, of the
former one.

The present investigation shows that, besides being proportional to the quantity of
heat, the force is proportional to the linear divergence of the lines along which the
heat flows ; and hence, if these lines are parallel, no matter how great may be the
difference of temperature, the gas can exert no pressure above the normal pressure
which it will exert on all surfaces alike. This is the case, whether the heat is commu-
nicated to gas or is spent in causing evaporation from the surface.

The relation between the difference of pressure and the divergence of the lines of
flow affords a clear explanation of the complex phenomena of the radiometer; and as
these phenomena have attracted a great deal of interest, I feel that an explanation of
them will not be out of place.

Divergence of the lines of flow and the radiometer.

120. We may readily obtain a graphic representation of the results expressed by
equations (124) and (140).

Fig. 12.

Let A B, fig. 12, be a plate from which heat is being communicated to the surround-
ing gas. Then the lines representing the flow of heat, drawn according to the law of
conduction, are shown in the figure.

(1.) The shape of these lines depends on the distribution of temperature over A B.
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Fig. 12 shows what the lines would be if A B were hot on one side and cold on the
other, the gas being at the mean temperature and of unlimited extent.

(2)) The distribution of temperature on an opposite surface, or containing vessel, will
also affect the shape of the lines of flow.

Fig. 13 shows the lines between two parallel plates opposite one another, the
inside face, H, being hotter than the opposite face, C, while the gas and the outside
faces of the plates are at the mean temperature of C and H.

Fig. 13,

(3.) The shape of the lines will also depend on the shape of the hot surface, and the
nature of the surface as affecting the rate at which it communicates heat to the gas.

Fig. 14 shows the direction of the lines for a cup-shaped surface, supposed to be
uniformly at a higher temperature than the gas.

Fig. 14.

In all these figures the lines are supposed to be drawn so that the distance between
any two lines is somewhere between s and 2s, so that the excess of pressure along the
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lines of flow depends, ceteris paribus, on the angle between two consecutive lines.
Thus the divergence of the lines indicates the excess of pressure, the excess being,
cawteris partbus, proportional to the square of the angle of divergence.

The shapes of the curves of flow are independent of the density of the gas, but the
distance between these lines varies inversely as the density; and since the angle
between the lines at distance s increases with s, we see that the excess of pressure along
the lines of flow increases as the density diminishes, as long as the mean range of the
molecules is not limited by the size of the containing vessel. When this point is
reached, there can be no further increase in the mean range, and the excess of pressure
will pass through a maximum value, and then fall with the density, until the ratio of
the excess of pressure to the mean pressure becomes constant, which it will be in the
limit.

The distribution of the force of impulsion as indicated by the figures.

121. In fig. 12 the divergence of the lines of flow is much greater towards the edges
of the plates than in the centre ; hence the excess of pressure will be greater towards
the edges. In the same way, on the cold side of the plate, the convergence of the lines
of flow is greatest towards the edges, and here the pressure will be least.

When the density of the gas is such that the width of the plate is large compared
with s, the divergence of the consecutive heat-lines at the middle of the plate is small,
which shows that there would be but little action on this part of the plate. At the
edges, however, the divergence is greater, and there must always be action at the edges ;
and the smaller the density of the gas, or the narrower the plate, the more nearly to the
middle of the plate will the inequality of pressure extend. Thus with a very narrow
plate, such as a spider-line, we may have the inequality of pressure all over the plate,
although in the same gas, with a broad plate, the action might only extend to a dis-
tance from the edge equal to the thickness of the spider-line.

Fig. 13 illustrates the paradox which furnished the clue to this theory. Towards
the middle of the plate the heat-lines are parallel, and consequently the pressure
would be equal and opposite on both plates, being the mean pressure of the gas; so
that, if the plates were of unlimited extent, there would be no change in the pressure
on either plate due to the one being hot and the other cold.

At the edges, however, the heat-lines diverge from the hot plate; hence at this
point this plate would be subject to an excess of pressure, which would tend to force
the plate back against the mean pressure of the gas on the outside. At the edges of
the cold plate the heat-lines converge on to the plate ; hence there will be a deficiency
of pressure, and the tendency will be for the pressure at the back to force the plate
forward toward the hot plate. Thus the action is not to separate the plates, but to
force them both to move in the direction of the hotter plate—to cause the hot plate to
run away, and the cold plate to follow it.
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Fig. 14 shows the inequality of pressure which may exist over a surface, itself at
uniform temperature, but differing from the temperature of the gas.

On the convex side the lines diverge much more rapidly than on the concave side,
and hence the inequality of pressure due to the communication of heat will be greater
on the convex side.

Stability of the equilibriwm.

122. The figures give the lines of flow on the supposition that the gas is at rest and
the surfaces all rigidly fixed. The condition would then be one of equilibrium. But
in order that such a condition might be maintained, it would be necessary that the
condition should be one of stable equilibrium. This is a point on which the foregoing
reasoning furnishes us with no information.

It is satisfactory, therefore, to be able to see what must happen if the equilibrium is
unstable. This is shown by equation (124), which gives the motion of the gas, so that
there may be no forces.

If either the surface A B, or the containing vessel, be perfectly free to move, then no
inequality of pressure will be possible, but motion must ensue. Equation (124) shows
the law of such motion.

The motion.

1238. The motion is given by

- s da

1a=:/——; EZTU .
If we suppose the containing vessel to be fixed, then, to allow of the motion of the
gas, the plate must move with the gas. On the other hand, if the plate be held, the
vessel will be carried by the gas in the opposite direction. ~Such is the phenomena of
the radiometer. The vanes are as nearly as possible free to move in the vessel, so that
their motion merely indicates the motion of the gas caused by the inequality of tem-
perature in the gas, which inequality is maintained by the unequal terperature of the
two sides of the vanes arising from their different power of absorbing light, or, in the
case of curved vanes, by the greater temperature of the vanes as compared with the
vessel. ' '

The constraint which is put upon the vanes in a rotatory manner necessarily dis-
turbs somewhat the free motion of the gas, as must also the friction of the pivot and
other resistances. Therefore the condition of the gas within the vessel cannot be one
of absolutely equal pressure ; and when either the size of the vanes or the density of
the gas are too great, the utmost inequality of pressure is insufficient to overcome
these resistances, and there is no motion. If, then, exhaustion proceeds, the inequality
of pressure increases, and motion ensues-—the rate of which, if the vanes were abso-
lutely free, would increase as the density diminished, until the mean range was limited

MDCCCLXXIX. L
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by the size of the envelope, so that the larger the envelope the greater the possible
rate of motion. When the paths of the molecules are limited by the size of the vessel,
the motion would, if the vanes were perfectly free to move, remain constant for all
further exhaustion ; but the inequalities of pressure which the gas is capable of exert-
ing diminish with the further rarefaction, and hence, in time, must cease to be sufli-
clent to overcome the resistances to which the motion of the vanes is subject, and
then the motion ceases.

124. There are many other points about the phenomena of the radiometer, but with
most of these I have already dealt in my former papers, the reasoning of which, so far
as 1t goes, appears to me to be perfectly consistent with the more complete view of the
action to which I have now attained.

My chief object in introducing the phenomena of the radiometer in this paper has
been to bring out how completely impulsion belongs to the same class of actions as
thermal transpiration, and the other phenomena depending on the relation which the
size of the external objects bears to the mean range within the gas.

The action does not depend on the distance between the hot and cold plates.

It has been supposed by some writers on the radiometer, that the action depends
essentially on the distance between the vanes and the sides of the vessel. This dis-
tance, however, is now seen not to be of primary consequence, as no action will result,
however close the plates may be, unless they are of limited extent—of sizes comparable
with the mean ranges,

SecrioN XITL —SuMMARY AND CONCLUSION.

125. The several steps in this investigation have now been described in detail.
They may be summarized as follows :—

(1.) The primary step from which all the rest may be said to follow is the method of
obtaining the equations of motion, so as to take into account not only the normal
stresses which result from the mean motion of the molecules at a point, but also the
normal and tangential stresses which result from a variation in the condition of the
gas (assumed to be molecular). This method is given in Sections VL., VIL, and VIIIL.

(2.) The method of adapting these equations to the case of transpiration through
tubes or porous plates is given in Section IX. The equations of steady motion being
reduced to a general equation, expressing the relation between the rate of transpira-
tion, the variation of pressure, the variation of temperature, the condition of the gas,
and the dimensions of the tube.

In Section X. is shown the manner in which were revealed the probable existence
(1) of the phenomena of thermal transpiration, and (2) the law of correspondence
between all the results of transpiration with different plates, so long as the density of
the gas is inversely proportional to the lateral linear dimensions of the passage through
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the plate; from which revelations originated the idea of making experiments on
thermal transpiration and transpiration under pressure. ,

(3.) The method of adapting the equations of steady motion to the case of impulsion
is given in Section XI. ‘

In Section XIL is shown how it first became apparent that the extremely low
pressures at which alone the phenomena of the radiometer had been obtained were con-
sequent on the comparatively large size of the vanes, and that by diminishing the size
of the vanes similar results might be obtained at higher pressures; whence followed
the idea of using the fibre of silk and the spider-line in place of the plate-vanes.

(4.) In Section XII it is also shown that while the phenomena of the radiometer
result from the communication of heat from a surface to a gas, as explained in my
former paper, these phenomena also depend on the divergence of the lines of flow;
whence it is shown that all the peculiar facts that have been observed may be
explained.

(5.) In Section X. it is also shown that the phenomena of transpiration, resulting
from a variation in the molecular constitution of the gas (investigated by GrRAmAM), are
also to be explained by the equation of transpiration.

(6.) Section II. (Part I.) contains a description of the experiments undertaken to
verify the revelations of Section X. respecting thermal transpiration ; which experi-
ments establish not only the existence of the phenomena, but also an exact correspon-
dence between the results for different plates at corresponding densities of the gas.

(7.) Section IIL. contains a description of the experiments on transpiration under
pressure, undertaken to verify the revelations of Section X. with respect to the
correspondence between the results to be obtained with plates of different coarseness
‘at certain corresponding densities of the gas; which experiments proved, not only
the existence of this correspondence, but also that the ratio of the corresponding den-
sities in these experiments are the same as the ratio of the corresponding densities
with the same plates for thermal transpiration—a fact which proves that the ratio
depends on the relative coarseness of the plates.

(8.) Section IV. contains a description of the experiments with the fibre of silk and
with the spider-line, undertaken to verify the revelations of Section XIL ; from which
experiments it appears that, with these small surfaces, phenomena of impulsion similar
to those of the radiometer occur at pressures but little less than that of the atmo-
sphere.

126. As regards transpiration and impulsion, the investigation appears to be com-
plete. Most, if not all, the phenomena previously known have been shown to be such
as must result from the tangential and normal stresses consequent on a varying
condition of molecularly constituted gas; while the previously unsuspected phenomena
to which it was found that a variation in the condition of a molecular gas must give
rise, have, on trial, been found to exist.

The results of the investigation lead to certain general conclusions which lie outside

5P 2
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the immediate object for which it was undertaken. The most important of these
viz. : that gas is not a continuous plenum, has already been noticed in Art. 5, Part L

The dvmensional properties of gas.

127. The experimental results, considered by themselves, bring to light the depen-
dence of a class of phenomena on the relation between the density of the gas and the
dimensions of objects, owing to the presence of which the phenomena occur. As long
as the density of the gas is inversely proportional to the coarseness of the plate, the
transpiration results correspond ; and in the same way, although not so fully investi-
gated, corresponding phenomena of impulsion are obtained as long as the density of the
gas is inversely proportional to the linear size of the objects exposed to its action. In
fact, the same correspondence appears with all the phenomena investigated.

We may examine this result in various ways, but, in whichever way we look at it,
it can have but one meaning. If in a gas we had to do with a continuous plenum
such that any portion must possess the same properties, we should only find the same
properties, however small might be the quantity of gas operated upon. Hence, in the
fact that we find properties of a gas depending on the size of the space in which it is
enclosed, and of the quantity of the gas enclosed in this space, we have proof that gas
is not continuous—or, in other words, that gas possesses a dimensional structure.

In virtue of their depending on this dimensional structure, and having afforded us
proof thereof, I propose to call the general properties of gas on which the phenomena
of transpiration and impulsion depend, the Dimensional Properties of Gases.

This name is also indicative of the nature of these properties as deduced from the
molecular theory ; for by this it appears that these properties depend on the mean
range—a linear quantity which, cateris paribus, depends on the distance between the
molecules. :

In forming a conception of a molecular constitution of gas, there is no difficulty in
realizing that such dimensional properties exist ; there is, perhaps, greater difficulty
in conceiving molecules so minute and so numerous that, in the resulting pheno-
mena, all evidence of the individual action is lost. But the real difficulty is to
conceive such a range of observational power as shall embrace, on the one hand, a
sufficient number of molecules for their individualities to be entirely lost, while, on the
other hand, it can be so far localized as regards time and space that, if not the action
of individuals, the actions of certain groups or classes of individuals becomes distin-
guishable from the action of the entire mass. Yet this is what we have in the
phenomena of transpiration and impulsion.

Although the results of the dimensional properties of gases are so minute that it
has required our utmost powers to detect them, it does not follow that the actions
which they reveal are of philosophical importance only. The actions only become
considerable within extremely small spaces, but then the work of construction in the
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animal and vegetable world, and the work of destruction in the mineral world, are
carried on within such spaces. The varying action of the sun must be to cause alter-
nate inspiration and expiration of air, promoting continual change of air within the
interstices of the soil as well as within the tissue of plants. What may be the effects
of such changes we do not know, but the changes go on; and we may fairly assume
that in the processes of nature the dimensional properties of gas play no unimportant
part. '

Nor is this all. It is by aid of the analogy which gas affords us that we must look
forward to solve the mystery of the luminiferous ether. And although all attempts to
frame a satisfactory hypothesis as to the molecular constitution of ether have hitherto
failed, in none of these hypotheses have the tangential and normal stresses arising
from a varying condition been taken into account ; whereas the recognition of the part
which these stresses play in the properties of gases shows, or at least suggests, the
possibility that the phenomena of ether which we observe may depend largely upon
analogous stresses.

APPENDIX.
(Added December, 1879).

Note 1.

Since the reading of this paper I have had my attention called to a paper by W. Frppersen (¢ Uber
Thermodiffusion von (Gasen,” Pocc. ¢ Ann.,” 1873). FrpprrSEN made some experiments, and seems to have
thought that he had discovered some such phenomenon. But the results he obtained were attributed by
M. J. VIoLLE to the presence of the vapour of water, against which no precautions appear to have been
taken (¢ Journal de Physique,” 1875, p. 90). That M. J. VIoLLE was right there can be do doubt, for the
results obtained are now seen to be much too large for the true results, and are similar to those which I
obtained before I had succeeded in sufficiently drying the air.

Nore 2.

Gramam applied the term “transpiration ” to the passage of gases through capillary tubes as distinguished
from the passage of gases through larger tubes and through apertures in thin plates, and applied the
term ¢ effusion” to the passage of gases through minute apertures in thin plates.

He did not apply either of these terms to the passage of gases through porous plates, because his
experiments led him to conclude that the phenomena attending such passage were not the same as the
phenomena attending either of the former, but were somewhere between the two.

By the fuller light thrown on to the subject by this investigation it appears that in the limit, when
the tubes and holes are small enough according to the condition of the gas, the laws of transpiration
are strictly the same as those of effusion, the theory of the phenomena being the same. Hence the
continued use of two names appears to be unadvisable.

The term “ transpiration’’ has been chosen in preference to effusion,” because it is found that as the
passages become coarser, according to the condition of the gas, the law of the passage of gas through
porous plates is still in strict accordance with the law of the passage through tubes, showing that the
passages are of the nature of tubes rather than thin plates.
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Nore 3, ART. 7.

It will be observed that this dependence of the phenomena on a relation between the size of the surfaces
and the mean path of a molecule is essentially different from what has been a common, but as is herein
shown, erroneous supposition, that the phenomena essentially depend on distance separating the opposite
surfaces. The one supposition makes the action of the radiometer depend on the size of the vanes, but
leaves it independent of the size of the envelope, while the other makes the action depend on the size of
the envelope, but leaves it so far independent of the size of the vanes.

Nore 4, Arrs. 41 axp 104.

The assumption that the coefficients A, m, A, and \,, also m' and \,, equation (99), are the same for
stucco as for meerschaum is equivalent to assuming that the only respect in which the interstices of these
plates differ is that of coarseness, There is no d prior: ground for making this assumption. The fact that the
logarithmic homologues for stucco fit those for meerschaum through such a considerable range of densities
proves the approximate truth of the assumption ; but it is possible, since ¢; and ¢, are arbitrary dimensions,
that the curves for transpiration under pressure depending on A, m, A\, and A, may approximately fit for
one value of &, and the curves for thermal transpiration depending on Ay, my Ay Ny, e, and Ny may

Ciy

approximately fit for another value of S5 Tf this were 50 log. <gi) ; the shift necessary to bring the curves

O
into coincidence would not be the same for transpiration under pressure as for thermal transpiration, and
as has been pointed out (Art. 41), this is to a certain extent the case, this ratio having the values 6:5 and 5-6—
a difference which was sufficiently decided to call for notice, but which is not so large but that, as pointed
out (Art. 41), it may possibly be due to the plates being hot in the one case and cold in the other. In
any case the smallness of the difference is an additional proof that the interstices do not greatly differ as
passages in any respect except that of size.

Nore 5, Arr, 119,
H
(a.) L= a{.M(’Lb?+-'z)9+1(79)}.
1

Whencé at the snrface when & is sufficiently small we have by equation (18)
< :

or neglecting

“”_,“l in equation (140)

791—{ f(c (’2) 11«/7rcf6<c 07)}%“‘

Therefore substituting for
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(b.) In my former paper (Proc. Roy. Soc. 1874, p. 407)

G___c}_ v v
g 6’
_1d, g d
p= 3—v~, and —=p.

Sy Y
Therefore, since '

and putbing ce=a,—a

845



- Phil. Tran:

Diagrom I.
Ain

a
o
¢
Pressures with, Meerschouwm

Hydrogen
[

o!

M

ki

Ler ‘ " usbouphiy al

C9g ooomg S 3

iy ‘ ‘. usboupdir w

D MO |BIGZ  WOAT WO YISAPTT e\mwmoxﬁp LT WAOF SPUAT, .%o_H
3 ——— T " pa ;
| =

i e
_ B
IMHWHW o
nllwﬂf; —_
. .
5
,,,/,//.M —— i
—X \
N
\
\
= s : -
ﬁm_j_:i:m_::_:,_wi_.i___Zo_
. V;
i 1
U



[. Trans: 1879. Plate 47.




Pressures with, Meerschauwm
3

ol ? . ‘?I§"?'T$@1‘° U3 %
05 06 07 0809 1 2 3 4
Pressures with. Stucco.
(o] MWSC)W (2
x Stucco




oum

5 P30

2 3 4 5 5 10 5 20 25 30
h Stucco

West Newman & C¢ lith.



Reynolds. Phil. Trans. 1879. Plate 48.

Diagram 2.

o Hy™ Meer ™ N°3.

Meer™ N° 3.

L. By Stucco N1,

T
A

1 |

Hy ?* Stucco N°Z2.

s b

A

I — LD N A

/

ir \Stanceo N91.

LA

Air|Stuceo N° 2.

4007

Dift of Fressure.

#0025

L og.

! Preds UvV"
P

|
@®

25 8| 35

Log. Pressures - 1

West, Neviman % C° lith.



R

<09

=08

i i 40

w
<09 407 \\

084 06 : K . .\Q

Phil. Trams. 1879. Plate 49.

West, Nevamom. & C9 Tith.

07 1 b5- %
el | X
o, b
05 4
S
Wi
04 Losix
04 ouw . A ¥\®E@.\®%ilﬂwl§/&«u
G
.03 m a\\ < /xf«l
e Ty
2 N
@« ® .m®\
3 m . Ay \ é\n\&
N 02l @\&\
0 °
i 5 \\&
o
e N " A
L Lot H.ub prd
009! \
5 Logs M @ E\

<Y
S
@
i
i
<)
Q
3

L of Pre

Dicx,g rom 3.

f Presswre.

Log. Diff o

[

Leynolds.

“0081 " 00e \
-007.] . A
g (0
006 © fd
i
Aﬂ@?
26§ Joos
o
-003]
~002]
Pressures for the X8
2 - L T L e o o s 13 2 8 4 5 6 7§ 810 40
Pres sures |for |the| «°
L ol ol o= o . 4
& oot f 1 7 0¥ i hi T PR A L I
0
o2
©9)
<
2
RN
0
S
o
.00k N - e
S
&
i B
D H . _
o
! , . -
| | Pressures for| thel ®9 ,
7 1
s 4§ 6 180 A I R BN NN T S I 2 2 o B Ak

|
[
e

0 Log. Pre -‘ure 1 2




D

Ta Famg

Phil. Trans: 1879, Plate 47,

:Dtu..ﬂ'rn.-ln 1
Air
L
d s oa
:
83y
TES S Hpdragen
j £
i
o] B & m
e s
k!
wgég
&
% g
=
=3
.. Lol i, A
Frasmumes with.
T {1 f 4 1 Qew [ A ]
PR TR E] I EEEE] ]
& [Mearschmiim
= Shucon

W, Morina B (27 1



